本文整理汇总了Python中bintrees.FastRBTree.floor_key方法的典型用法代码示例。如果您正苦于以下问题:Python FastRBTree.floor_key方法的具体用法?Python FastRBTree.floor_key怎么用?Python FastRBTree.floor_key使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bintrees.FastRBTree
的用法示例。
在下文中一共展示了FastRBTree.floor_key方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TDigest
# 需要导入模块: from bintrees import FastRBTree [as 别名]
# 或者: from bintrees.FastRBTree import floor_key [as 别名]
class TDigest(object):
def __init__(self, delta=0.01, K=25):
self.C = RBTree()
self.n = 0
self.delta = delta
self.K = K
def __add__(self, other_digest):
C1 = list(self.C.values())
C2 = list(other_digest.C.values())
shuffle(C1)
shuffle(C2)
data = C1 + C2
new_digest = TDigest(self.delta, self.K)
for c in data:
new_digest.update(c.mean, c.count)
return new_digest
def __len__(self):
return len(self.C)
def __repr__(self):
return """<T-Digest: n=%d, centroids=%d>""" % (self.n, len(self))
def _add_centroid(self, centroid):
if centroid.mean not in self.C:
self.C.insert(centroid.mean, centroid)
else:
self.C[centroid.mean].update(centroid.mean, centroid.count)
def _compute_centroid_quantile(self, centroid):
denom = self.n
cumulative_sum = sum(
c_i.count for c_i in self.C.value_slice(-float('Inf'), centroid.mean))
return (centroid.count / 2. + cumulative_sum) / denom
def _update_centroid(self, centroid, x, w):
self.C.pop(centroid.mean)
centroid.update(x, w)
self._add_centroid(centroid)
def _find_closest_centroids(self, x):
try:
ceil_key = self.C.ceiling_key(x)
except KeyError:
floor_key = self.C.floor_key(x)
return [self.C[floor_key]]
try:
floor_key = self.C.floor_key(x)
except KeyError:
ceil_key = self.C.ceiling_key(x)
return [self.C[ceil_key]]
if abs(floor_key - x) < abs(ceil_key - x):
return [self.C[floor_key]]
elif abs(floor_key - x) == abs(ceil_key - x) and (ceil_key != floor_key):
return [self.C[ceil_key], self.C[floor_key]]
else:
return [self.C[ceil_key]]
def _theshold(self, q):
return 4 * self.n * self.delta * q * (1 - q)
def update(self, x, w=1):
"""
Update the t-digest with value x and weight w.
"""
self.n += w
if len(self) == 0:
self._add_centroid(Centroid(x, w))
return
S = self._find_closest_centroids(x)
while len(S) != 0 and w > 0:
j = choice(list(range(len(S))))
c_j = S[j]
q = self._compute_centroid_quantile(c_j)
# This filters the out centroids that do not satisfy the second part
# of the definition of S. See original paper by Dunning.
if c_j.count + w > self._theshold(q):
S.pop(j)
continue
delta_w = min(self._theshold(q) - c_j.count, w)
self._update_centroid(c_j, x, delta_w)
w -= delta_w
S.pop(j)
if w > 0:
self._add_centroid(Centroid(x, w))
if len(self) > self.K / self.delta:
#.........这里部分代码省略.........