本文整理汇总了Python中bintrees.FastRBTree.min_key方法的典型用法代码示例。如果您正苦于以下问题:Python FastRBTree.min_key方法的具体用法?Python FastRBTree.min_key怎么用?Python FastRBTree.min_key使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bintrees.FastRBTree
的用法示例。
在下文中一共展示了FastRBTree.min_key方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ExclusiveRangeDict
# 需要导入模块: from bintrees import FastRBTree [as 别名]
# 或者: from bintrees.FastRBTree import min_key [as 别名]
class ExclusiveRangeDict(object):
"""A class like dict whose key is a range [begin, end) of integers.
It has an attribute for each range of integers, for example:
[10, 20) => Attribute(0),
[20, 40) => Attribute(1),
[40, 50) => Attribute(2),
...
An instance of this class is accessed only via iter_range(begin, end).
The instance is accessed as follows:
1) If the given range [begin, end) is not covered by the instance,
the range is newly created and iterated.
2) If the given range [begin, end) exactly covers ranges in the instance,
the ranges are iterated.
(See test_set() in tests/range_dict_tests.py.)
3) If the given range [begin, end) starts at and/or ends at a mid-point of
an existing range, the existing range is split by the given range, and
ranges in the given range are iterated. For example, consider a case that
[25, 45) is given to an instance of [20, 30), [30, 40), [40, 50). In this
case, [20, 30) is split into [20, 25) and [25, 30), and [40, 50) into
[40, 45) and [45, 50). Then, [25, 30), [30, 40), [40, 45) are iterated.
(See test_split() in tests/range_dict_tests.py.)
4) If the given range [begin, end) includes non-existing ranges in an
instance, the gaps are filled with new ranges, and all ranges are iterated.
For example, consider a case that [25, 50) is given to an instance of
[30, 35) and [40, 45). In this case, [25, 30), [35, 40) and [45, 50) are
created in the instance, and then [25, 30), [30, 35), [35, 40), [40, 45)
and [45, 50) are iterated.
(See test_fill() in tests/range_dict_tests.py.)
"""
class RangeAttribute(object):
def __init__(self):
pass
def __str__(self):
return '<RangeAttribute>'
def __repr__(self):
return '<RangeAttribute>'
def copy(self): # pylint: disable=R0201
return ExclusiveRangeDict.RangeAttribute()
def __init__(self, attr=RangeAttribute):
self._tree = FastRBTree()
self._attr = attr
def iter_range(self, begin=None, end=None):
if not begin:
begin = self._tree.min_key()
if not end:
end = self._tree.max_item()[1][0]
# Assume that self._tree has at least one element.
if self._tree.is_empty():
self._tree[begin] = (end, self._attr())
# Create a beginning range (border)
try:
bound_begin, bound_value = self._tree.floor_item(begin)
bound_end = bound_value[0]
if begin >= bound_end:
# Create a blank range.
try:
new_end, _ = self._tree.succ_item(bound_begin)
except KeyError:
new_end = end
self._tree[begin] = (min(end, new_end), self._attr())
elif bound_begin < begin and begin < bound_end:
# Split the existing range.
new_end = bound_value[0]
new_value = bound_value[1]
self._tree[bound_begin] = (begin, new_value.copy())
self._tree[begin] = (new_end, new_value.copy())
else: # bound_begin == begin
# Do nothing (just saying it clearly since this part is confusing)
pass
except KeyError: # begin is less than the smallest element.
# Create a blank range.
# Note that we can assume self._tree has at least one element.
self._tree[begin] = (min(end, self._tree.min_key()), self._attr())
# Create an ending range (border)
try:
bound_begin, bound_value = self._tree.floor_item(end)
bound_end = bound_value[0]
if end > bound_end:
# Create a blank range.
new_begin = bound_end
self._tree[new_begin] = (end, self._attr())
elif bound_begin < end and end < bound_end:
# Split the existing range.
new_end = bound_value[0]
new_value = bound_value[1]
self._tree[bound_begin] = (end, new_value.copy())
#.........这里部分代码省略.........
示例2: TDigest
# 需要导入模块: from bintrees import FastRBTree [as 别名]
# 或者: from bintrees.FastRBTree import min_key [as 别名]
#.........这里部分代码省略.........
def percentile(self, p):
"""
Computes the percentile of a specific value in [0,100].
"""
if not (0 <= p <= 100):
raise ValueError("p must be between 0 and 100, inclusive.")
t = 0
p = float(p)/100.
p *= self.n
for i, key in enumerate(self.C.keys()):
c_i = self.C[key]
k = c_i.count
if p < t + k:
if i == 0:
return c_i.mean
elif i == len(self) - 1:
return c_i.mean
else:
delta = (self.C.succ_item(key)[1].mean - self.C.prev_item(key)[1].mean) / 2.
return c_i.mean + ((p - t) / k - 0.5) * delta
t += k
return self.C.max_item()[1].mean
def quantile(self, q):
"""
Computes the quantile of a specific value, ie. computes F(q) where F denotes
the CDF of the distribution.
"""
t = 0
N = float(self.n)
if len(self) == 1: # only one centroid
return int(q >= self.C.min_key())
for i, key in enumerate(self.C.keys()):
c_i = self.C[key]
if i == len(self) - 1:
delta = (c_i.mean - self.C.prev_item(key)[1].mean) / 2.
else:
delta = (self.C.succ_item(key)[1].mean - c_i.mean) / 2.
z = max(-1, (q - c_i.mean) / delta)
if z < 1:
return t / N + c_i.count / N * (z + 1) / 2
t += c_i.count
return 1
def trimmed_mean(self, p1, p2):
"""
Computes the mean of the distribution between the two percentiles p1 and p2.
This is a modified algorithm than the one presented in the original t-Digest paper.
"""
if not (p1 < p2):
raise ValueError("p1 must be between 0 and 100 and less than p2.")
s = k = t = 0
p1 /= 100.
p2 /= 100.
p1 *= self.n
p2 *= self.n
for i, key in enumerate(self.C.keys()):
c_i = self.C[key]
k_i = c_i.count
if p1 < t + k_i:
if t < p1:
nu = self.__interpolate(i,key,p1-t)
else:
nu = 1
s += nu * k_i * c_i.mean
k += nu * k_i
if p2 < t + k_i:
nu = self.__interpolate(i,key,p2-t)
s -= nu * k_i * c_i.mean
k -= nu * k_i
break
t += k_i
return s/k
def __interpolate(self, i, key, diff):
c_i = self.C[key]
k_i = c_i.count
if i == 0:
delta = self.C.succ_item(key)[1].mean - c_i.mean
elif i == len(self) - 1:
delta = c_i.mean - self.C.prev_item(key)[1].mean
else:
delta = (self.C.succ_item(key)[1].mean - self.C.prev_item(key)[1].mean) / 2.
return (diff / k_i - 0.5) * delta