本文整理汇总了C#中System.Matrix.T方法的典型用法代码示例。如果您正苦于以下问题:C# Matrix.T方法的具体用法?C# Matrix.T怎么用?C# Matrix.T使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Matrix
的用法示例。
在下文中一共展示了Matrix.T方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CoordinateT
/// <summary>
/// 通过新旧坐标表构造,至少两个点
/// </summary>
/// <param name="pold">旧坐标表</param>
/// <param name="pnew">新坐标表</param>
/// <param name="mode">默认为0(迭代求解),其他时候(直接求解)</param>
public CoordinateT(List<_2D_Point> pold,List<_2D_Point> pnew,int mode=0)
{
this.pold = pold;
this.pnew = pnew;
Matrix x;
if(mode==0)
{
Matrix v=new Matrix(pnew.Count*2,1);
do
{
Matrix B = GetB(),
l = Getl();
x = (B.T() * B).Inverse() * B.T() * l;
Update(x);
v = v + B * x - l;
} while (!Terminate(x));
xigema = Math.Sqrt((v.T() * v / (pnew.Count * 2 - 4))[0, 0]);
}
else
{
Matrix B = new Matrix(pnew.Count * 2, 4);
Matrix l = new Matrix(pnew.Count * 2, 1);
for (int i = 0; i < pnew.Count; i++)
{
B[2 * i, 0] = 1;
B[2 * i, 1] = 0;
B[2 * i, 2] = pold[i].X;
B[2 * i, 3] = pold[i].Y;
B[2 * i + 1, 0] = 0;
B[2 * i + 1, 1] = 1;
B[2 * i + 1, 2] = pold[i].Y;
B[2 * i + 1, 3] = -pold[i].X;
l[2*i, 0] = pnew[i].X;
l[2 * i + 1,0] = pnew[i].Y;
}
x = (B.T() * B).Inverse() * B.T() * l;
dx = x[0, 0];
dy = x[1, 0];
xita = Math.Atan(x[3, 0] / x[2, 0]);
m = x[2, 0] / cos(xita) - 1;
Matrix X=new Matrix(4,1);
Matrix v = B * x - l;
xigema = Math.Sqrt((v.T() * v / (pnew.Count * 2 - 4))[0, 0]);
}
}
示例2: CoordinateT3
/// <summary>
/// 通过新旧坐标表构造,三个点以上
/// </summary>
/// <param name="pold">旧坐标表</param>
/// <param name="pnew">新坐标表</param>
public CoordinateT3(List<_3D_Point> pold,List<_3D_Point> pnew)
{
this.pold = pold;
this.pnew = pnew;
Matrix x;
Matrix v=new Matrix(pnew.Count*3,1);
Matrix B = GetB(),
l = Getl();
x = (B.T() * B).Inverse() * B.T() * l;
Update(x);
v = B * x - l;
xigema = Math.Sqrt((v.T() * v / (pnew.Count * 3 - 4))[0, 0]);
}
示例3: ForwardForcus
/// <summary>
/// 严密的前方交会
/// </summary>
public List<OData> ForwardForcus(List<OData> originOdList)
{
Matrix t, x;
List<_3D_Point> Xx = new List<_3D_Point>();
//迭代求解加密点坐标(循环分块)
do
{
Xx.Clear();
List<Matrix> Bs = new List<Matrix>();
List<Matrix> ls = new List<Matrix>();
for (int i = 0; i < outE.Count; i++)
{
Bs.Add(GetFB(outE[i], PassIList[i], originOdList));
ls.Add(GetFl(outE[i], PassIList[i], originOdList));
}
Matrix B = new Matrix(Bs.Count * 2, 3);
Matrix lm = new Matrix(Bs.Count * 2, 1);
for (int m = 0; m < originOdList.Count; m++)
{
for (int i = 0; i < outE.Count; i++)
{
B[2 * i, 0] = Bs[i][2 * m, 0];
B[2 * i, 1] = Bs[i][2 * m, 1];
B[2 * i, 2] = Bs[i][2 * m, 2];
B[2 * i + 1, 0] = Bs[i][2 * m, 0];
B[2 * i + 1, 1] = Bs[i][2 * m + 1, 1];
B[2 * i + 1, 2] = Bs[i][2 * m + 1, 2];
lm[2 * i, 0] = ls[i][2 * m, 0];
lm[2 * i + 1, 0] = ls[i][2 * m + 1, 0];
}
x = (B.T() * B).Inverse() * B.T() * lm;
Xx.Add(new _3D_Point(x[0, 0], x[1, 0], x[2, 0]));
}
t = _3D_Point.ToColumnMatrix(Xx);
for (int i = 0; i < originOdList.Count; i++)
{
originOdList[i].pos += Xx[i];
}
} while (!IsTerminating(0.000001, t));
//StreamWriter sw = new StreamWriter("result.txt");
//List<double> rs = new List<double>();
//List<_3D_Point> ddxyz = new List<_3D_Point>();
//for (int i = 0; i < ps.Count; i++)
//{
// _3D_Point dxyz = ps[i].pos - PassOList[i].pos;
// ddxyz.Add(dxyz);
// double r = _3D_Point.Get_Norm(dxyz, new _3D_Point());
// rs.Add(r);
// sw.WriteLine(ps[i].Name + "," + ps[i].pos + "," + dxyz + "," + r);
//}
//double sum = 0;
//rs.ForEach(r => sum += r * r); double a = Math.Sqrt(sum / rs.Count);
//sw.WriteLine("dr=" + a + ",点位精度:" + a / 5000);
//sw.Close();
PassOList = originOdList;
return PassOList;
}
示例4: LightMethod
/// <summary>
/// 光束法
/// </summary>
/// <param name="ie">内方位元素初值</param>
/// <returns></returns>
public List<OData> LightMethod(InElement ie)
{
BackForcus(ie);
ForwardForcus();
AllOList = MCOList.Concat(PassOList).ToList();
AllIList =AllIList??new List<List<IData>>();
for (int i = 0; i < MCIList.Count;++i )
{
AllIList.Add(MCIList[i].Concat(PassIList[i]).ToList());
}
Matrix B = new Matrix(AllOList.Count * 2 * AllIList.Count, 7 * MCIList.Count + 3 * AllOList.Count),
l = new Matrix(B.Row, 1),
Bx = new Matrix(outE.Count, B.Column),
w = new Matrix(Bx.Row, 1),
P = Matrix.Eye(B.Column);
#region 设置控制点的权值
for (int i = 0; i < MCOList.Count;++i )
{
P[i, i] = 500;
}
#endregion
double[] X = new double[7 * outE.Count+PassIList[0].Count*3];
for (int i = 0, j = 0; i < outE.Count; i++, j = j + 7)
{
X[j] = outE[i].Spos.X;
X[j + 1] = outE[i].Spos.Y;
X[j + 2] = outE[i].Spos.Z;
X[j + 3] = outE[i].q0;
X[j + 4] = outE[i].q1;
X[j + 5] = outE[i].q2;
X[j + 6] = outE[i].q3;
}
if (PassOList.Count == 0)
{
PassIList[0].ForEach(pi => PassOList.Add(new OData(pi.Name, new _3D_Point())));
}
int start = 7 * outE.Count;
for (int i = 0; i < PassIList[0].Count; ++i)
{
PassOList[i].pos.X = X[start + 3 * i];
PassOList[i].pos.Y = X[start + 3 * i + 1];
PassOList[i].pos.Z = X[start + 3 * i + 2];
}
Matrix X0 = new Matrix(X.GetLength(0), 1, X);
Matrix x;
do
{
SetBl_light(B, l, Bx, w);
var N1 = Matrix.ColumnCombine(B.T() * B, Bx.T());
var N2 = Matrix.ColumnCombine(Bx, Matrix.Zeros(Bx.Row, Bx.Row));
var N = Matrix.RowCombine(N1, N2);
var W = Matrix.RowCombine(B.T() * l, w);
var Y = N.Inverse() * W;
x = Y.SubRMatrix(0, B.Column - 1);
X0 = X0 + x;
UpdateData_light(X0);
} while (!IsTerminating(0.000001, x));
UpdateData_light(X0);
return PassOList;
}
示例5: BackForcus0
/// <summary>
/// 带有初值的后方交会
/// </summary>
private void BackForcus0()
{
Matrix B = new Matrix(MCOList.Count * 2 * MCIList.Count, 9 + 7 * MCIList.Count),
l = new Matrix(B.Row, 1),
Bx = new Matrix(outE.Count, B.Column),
w = new Matrix(Bx.Row, 1);
int start = 7 * outE.Count;
double[] X = new double[9 + 7 * outE.Count];
for (int i = 0, j = 0; i < outE.Count; i++, j = j + 7)
{
X[j] = outE[i].Spos.X;
X[j + 1] = outE[i].Spos.Y;
X[j + 2] = outE[i].Spos.Z;
X[j + 3] = outE[i].q0;
X[j + 4] = outE[i].q1;
X[j + 5] = outE[i].q2;
X[j + 6] = outE[i].q3;
}
X[start] = inE.p0.X;
X[start + 1] = inE.p0.Y;
X[start + 2] = inE.f;
X[start + 3] = dParams.k1;
X[start + 4] = dParams.k2;
X[start + 5] = dParams.p1;
X[start + 6] = dParams.p2;
X[start + 7] = dParams.alph;
X[start + 8] = dParams.beta;
Matrix X0 = new Matrix(X.GetLength(0), 1, X);
Matrix x;
do
{
SetBl0(B, l, Bx, w);
//B.OutPut("B");
//l.OutPut("l");
//Bx.OutPut("Bx");
//w.OutPut("w");
var N1 = Matrix.ColumnCombine(B.T() * B, Bx.T());
var N2 = Matrix.ColumnCombine(Bx, Matrix.Zeros(Bx.Row, Bx.Row));
var N = Matrix.RowCombine(N1, N2);
var W = Matrix.RowCombine(B.T() * l, w);
var Y = N.Inverse() * W;
x = Y.SubRMatrix(0, B.Column - 1);
X0 = X0 + x;
UpdateData0(X0);
} while (!IsTerminating(0.000001, x));
UpdateData0(X0);
}
示例6: BackForcus
/// <summary>
/// 已知内方位元素、畸变参数的后方交会(可求出外方位元素)
/// 附有限制条件的间接平差
/// </summary>
/// <param name="ie">内方位元素初值</param>
/// <param name="dp">畸变参数</param>
public void BackForcus(InElement ie, DParams dp)
{
for (int i = 0; i < MCIList.Count; ++i)
{
outE.Add(new OutElement4 { q0 = 1 });
}
inE = ie;
dParams = dp;
Matrix B = new Matrix(MCOList.Count * 2 * MCIList.Count, 7 * MCIList.Count),
l = new Matrix(B.Row, 1),
Bx = new Matrix(outE.Count, B.Column),
w = new Matrix(Bx.Row, 1);
double[] X = new double[7 * outE.Count];
for (int i = 0, j = 0; i < outE.Count; i++, j = j + 7)
{
X[j] = outE[i].Spos.X;
X[j + 1] = outE[i].Spos.Y;
X[j + 2] = outE[i].Spos.Z;
X[j + 3] = outE[i].q0;
X[j + 4] = outE[i].q1;
X[j + 5] = outE[i].q2;
X[j + 6] = outE[i].q3;
}
Matrix X0 = new Matrix(X.GetLength(0), 1, X);
Matrix x;
do
{
SetBl(B, l, Bx, w);
var N1 = Matrix.ColumnCombine(B.T() * B, Bx.T());
var N2 = Matrix.ColumnCombine(Bx, Matrix.Zeros(Bx.Row, Bx.Row));
var N = Matrix.RowCombine(N1, N2);
var W = Matrix.RowCombine(B.T() * l, w);
var Y = N.Inverse() * W;
x = Y.SubRMatrix(0, B.Column - 1);
X0 = X0 + x;
UpdateData(X0);
} while (!IsTerminating(0.000001, x));
UpdateData(X0);
}
示例7: BackForcus
/// <summary>
/// 已知内方位元素、外方位元素、畸变参数初值的后方交会,应先调用SetOriginValue
/// </summary>
public void BackForcus()
{
Matrix B = new Matrix(MCOList.Count * 2 * MCIList.Count, 6 * MCIList.Count+9),
l = new Matrix(B.Row, 1);
double[] X = new double[6 * outE.Count+9];
for (int i = 0, j = 0; i < outE.Count; i++, j = j + 6)
{
X[j] = outE[i].Spos.X;
X[j + 1] = outE[i].Spos.Y;
X[j + 2] = outE[i].Spos.Z;
X[j + 3] = outE[i].phi;
X[j + 4] = outE[i].omega;
X[j + 5] = outE[i].kappa;
}
int start = outE.Count * 6;
X[start] = inE.p0.X;
X[start + 1] = inE.p0.Y;
X[start + 2] = inE.f;
X[start + 3] = dParams.k1;
X[start + 4] = dParams.k2;
X[start + 5] = dParams.p1;
X[start + 6] = dParams.p2;
X[start + 7] = dParams.alph;
X[start + 8] = dParams.beta;
Matrix X0 = new Matrix(X.GetLength(0), 1, X);
Matrix x;
do
{
SetBl(B, l);
x = (B.T() * B).Inverse() * B.T() * l;
X0 = X0 + x;
UpdateData(X0);
} while (!IsTerminating(0.000001, x));
UpdateData(X0);
}
示例8: TTest1
public void TTest1()
{
double[,] data = null; // TODO: инициализация подходящего значения
Matrix target = new Matrix(data); // TODO: инициализация подходящего значения
target.T();
Assert.Inconclusive("Невозможно проверить метод, не возвращающий значение.");
}
示例9: Adjustment
//DLT算法
public void Adjustment()
{
int count=data.oCount;
Matrix B=new Matrix(count * 2, 11);
Matrix l=new Matrix(count * 2, 1);
//求L系数初值
for (int j = 0; j < data.Count;j++)
{
for (int i = 0; i < data.oCount;i++)
{
double x = data.oIPoints[j][i].X,
y = data.oIPoints[j][i].Y,
X = data.oPoints[i].X,
Y = data.oPoints[i].Y,
Z = data.oPoints[i].Z;
B[2 * i,0] = X;
B[2 * i,1] = Y;
B[2 * i,2] = Z;
B[2 * i,3] = 1;
B[2 * i,8] = -x*X;
B[2 * i,9] = -x*Y;
B[2 * i,10] = -x*Z;
B[2 * i + 1,4] = X;
B[2 * i + 1,5] = Y;
B[2 * i + 1,6] = Z;
B[2 * i + 1,7] = 1;
B[2 * i + 1,8] = -y*X;
B[2 * i + 1,9] = -y*Y;
B[2 * i + 1,10] = -y*Z;
l[2 * i,0] = x;
l[2 * i + 1,0] = y;
}
int xCount = 12;//未知数个数
Matrix L0 = ((B.T()*B).Inverse()*(B.T()*l));
Matrix L=new Matrix(xCount, 1);
for (int i = 0; i < xCount-1; i++)
L[i,0] = L0[i,0];
Matrix M=new Matrix(count * 2, xCount);
Matrix W=new Matrix(count * 2, 1);
double f = 9999;
//迭代求解L系数
while (abs(f - inE[j].fx) >= 0.01)
{
f = inE[j].fx;
double x0 = (L[0,0] * L[8,0] + L[1,0] * L[9,0] + L[2,0] * L[10,0]) /
(pow2(L[8,0]) + pow2(L[9,0]) + pow2(L[10,0])),
y0 = (L[4,0] * L[8,0] + L[5,0] * L[9,0] + L[6,0] * L[10,0]) /
(pow2(L[8,0]) + pow2(L[9,0]) + pow2(L[10,0]));
for (int i = 0; i < data.oCount; i++)
{
double x = data.oIPoints[j][i].X,
y = data.oIPoints[j][i].Y,
X = data.oPoints[i].X,
Y = data.oPoints[i].Y,
Z = data.oPoints[i].Z;
double A = X*L[8,0] +Y*L[9,0] +Z*L[10,0] + 1;
double r_2 = (x - x0)*(x - x0) + (y - y0)*(y - y0);
M[2 * i,0] = X / A;
M[2 * i,1] = Y / A;
M[2 * i,2] = Z / A;
M[2 * i,3] = 1 / A;
M[2 * i,8] = -X*x / A;
M[2 * i,9] = -Y*x / A;
M[2 * i,10] = -Z*x / A;
M[2 * i,11] = -(x - x0)*r_2;
M[2 * i + 1,4] = X / A;
M[2 * i + 1,5] = Y / A;
M[2 * i + 1,6] = Z / A;
M[2 * i + 1,7] = 1 / A;
M[2 * i + 1,8] = -X*y / A;
M[2 * i + 1,9] = -Y*y / A;
M[2 * i + 1,10] = -Z*y / A;
M[2 * i + 1,11] = -(y - y0)*r_2;
W[2 * i,0] = x / A;
W[2 * i + 1,0] = y / A;
}
Matrix nL = (M.T()*M).Inverse()*M.T()*W;
double dbeta, ds, fx, fy,Xs,Ys,Zs,a3,b3,c3,b1,b2;
double gama3 = 1 / sqrt(pow2(nL[8,0]) + pow2(nL[9,0]) + pow2(nL[10,0]));
x0 = (nL[0,0] * nL[8,0] + nL[1,0] * nL[9,0] + nL[2,0] * nL[10,0]) /
(pow2(nL[8,0]) + pow2(nL[9,0]) + pow2(nL[10,0]));
y0 = (nL[4,0] * nL[8,0] + nL[5,0] * nL[9,0] + nL[6,0] * nL[10,0]) /
(pow2(nL[8,0]) + pow2(nL[9,0]) + pow2(nL[10,0]));
double At = gama3*gama3*(pow2(nL[0,0]) + pow2(nL[1,0]) + pow2(nL[2,0])) - x0*x0,
Bt = gama3*gama3*(pow2(nL[4,0]) + pow2(nL[5,0]) + pow2(nL[6,0])) - y0*y0,
Ct = gama3*gama3*(nL[0,0] * nL[4,0] + nL[1,0] * nL[5,0] + nL[2,0] * nL[6,0]) - x0*y0;
if (Ct >= 0)
{
dbeta = -asin(sqrt(Ct*Ct / At / Bt));
}
else
{
dbeta = asin(sqrt(Ct*Ct / At / Bt));
}
ds = sqrt(At / Bt) - 1;
fx = sqrt((At*Bt - Ct*Ct) / Bt);
fy = sqrt((At*Bt - Ct*Ct) / At);
//.........这里部分代码省略.........