本文整理汇总了C#中System.Matrix.Multiply方法的典型用法代码示例。如果您正苦于以下问题:C# Matrix.Multiply方法的具体用法?C# Matrix.Multiply怎么用?C# Matrix.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Matrix
的用法示例。
在下文中一共展示了Matrix.Multiply方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: TestMultiply
[Test()] public void TestMultiply()
{
var matrix = new Matrix<float>(5, 5);
float[] row = { 1, 2, 3, 4, 5 };
for (int i = 0; i < 5; i++)
matrix.SetRow(i, row);
matrix.Multiply(2.5f);
float[] testrow = { 2.5f, 5f, 7.5f, 10f, 12.5f };
Assert.AreEqual(testrow, matrix.GetRow(3));
}
示例2: ExceptionInterfaceIncompatibleMatrices
public void ExceptionInterfaceIncompatibleMatrices()
{
IMathematicalMatrix matrix1 = new Matrix(2, 3);
matrix1[0, 0] = 1;
matrix1[0, 1] = 2;
matrix1[0, 2] = -4;
matrix1[1, 0] = 0;
matrix1[1, 1] = 3;
matrix1[1, 2] = -1;
IMathematicalMatrix matrix2 = MatrixTest.GetTestMatrix();
matrix1.Multiply(matrix2);
}
示例3: MultiplyRaiseException
public void MultiplyRaiseException()
{
Matrix matrix1 = new Matrix(new double[][] { new double[] { 1.0, 2.0 }, new double[] { 3.0, 4.0 } });
Matrix matrix2 = new Matrix(new double[][] { new double[] { 5.0, 6.0 }, new double[] { 7.0, 8.0 }, new double[] { 9.0, 10.0 } });
try
{
matrix1.Multiply(matrix2);
Assert.Fail();
}
catch (Exception ex)
{
Assert.IsInstanceOfType(ex, typeof(InvalidOperationException));
Assert.AreEqual("Matrices cannot be multiplied", ex.Message);
}
}
示例4: MultiplyByNumber
public void MultiplyByNumber()
{
Matrix matrix1 = new Matrix(new double[][] { new double[] { 1.0, 2.0 }, new double[] { 3.0, 4.0 } });
Matrix matrix2 = new Matrix(new double[][] { new double[] { 1.0 * 3.0, 2.0 * 3.0 }, new double[] { 3.0 * 3.0, 4.0 * 3.0 } });
Matrix matrix = matrix1.Multiply(3.0);
Assert.AreEqual(matrix2, matrix);
}
示例5: Multiply
public void Multiply()
{
Matrix matrix1 = new Matrix(new double[][] { new double[] { 1.0, 2.0 }, new double[] { 3.0, 4.0 } });
Matrix matrix2 = new Matrix(new double[][] { new double[] { 5.0, 6.0 }, new double[] { 7.0, 8.0 } });
Matrix matrix = matrix1.Multiply(matrix2);
Assert.AreEqual(4, matrix.Size);
var elements = matrix.Elements;
Assert.AreEqual((1.0 * 5.0) + (2.0 * 7.0), elements[0][0]);
Assert.AreEqual((1.0 * 6.0) + (2.0 * 8.0), elements[0][1]);
Assert.AreEqual((3.0 * 5.0) + (4.0 * 7.0), elements[1][0]);
Assert.AreEqual((3.0 * 6.0) + (4.0 * 8.0), elements[1][1]);
}
示例6: Gradient
private static double Gradient(RealVector A, RealVector grad, double[,] data, double[] classes, int dimensions, int neighborSamples, double regularization) {
var instances = data.GetLength(0);
var attributes = data.GetLength(1);
var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
alglib.sparsematrix probabilities;
alglib.sparsecreate(instances, instances, out probabilities);
var transformedDistances = new Dictionary<int, double>(instances);
for (int i = 0; i < instances; i++) {
var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
for (int k = 0; k < instances; k++) {
if (k == i) {
transformedDistances.Remove(k);
continue;
}
var kVector = new Matrix(GetRow(data, k));
transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
}
var normalization = transformedDistances.Sum(x => x.Value);
if (normalization <= 0) continue;
foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSamples)) {
alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
}
}
alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
int t0 = 0, t1 = 0, r, c;
double val;
var pi = new double[instances];
while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
if (classes[r].IsAlmost(classes[c])) {
pi[r] += val;
}
}
var innerSum = new double[attributes, attributes];
while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
if (classes[r].IsAlmost(classes[c])) {
vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
}
}
var func = -pi.Sum() + regularization * AMatrix.SumOfSquares();
r = 0;
var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
foreach (var g in newGrad) {
grad[r] = g + regularization * 2 * A[r];
r++;
}
return func;
}
示例7: Solve
/// <summary>
/// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
/// solution vector and x is the unknown vector.
/// </summary>
/// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
/// <param name="input">The solution vector, <c>b</c></param>
/// <param name="result">The result vector, <c>x</c></param>
public void Solve(Matrix matrix, Vector input, Vector result)
{
// If we were stopped before, we are no longer
// We're doing this at the start of the method to ensure
// that we can use these fields immediately.
_hasBeenStopped = false;
// Error checks
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.Count != input.Count)
{
throw new ArgumentException(Resources.ArgumentVectorsSameLength);
}
if (input.Count != matrix.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
}
// Initialize the solver fields
// Set the convergence monitor
if (_iterator == null)
{
_iterator = Iterator.CreateDefault();
}
if (_preconditioner == null)
{
_preconditioner = new UnitPreconditioner();
}
_preconditioner.Initialize(matrix);
var d = new DenseVector(input.Count);
var r = new DenseVector(input);
var uodd = new DenseVector(input.Count);
var ueven = new DenseVector(input.Count);
var v = new DenseVector(input.Count);
var pseudoResiduals = new DenseVector(input);
var x = new DenseVector(input.Count);
var yodd = new DenseVector(input.Count);
var yeven = new DenseVector(input);
// Temp vectors
var temp = new DenseVector(input.Count);
var temp1 = new DenseVector(input.Count);
var temp2 = new DenseVector(input.Count);
// Initialize
var startNorm = input.Norm(2);
// Define the scalars
double alpha = 0;
double eta = 0;
double theta = 0;
var tau = startNorm;
var rho = tau * tau;
// Calculate the initial values for v
// M temp = yEven
_preconditioner.Approximate(yeven, temp);
// v = A temp
matrix.Multiply(temp, v);
// Set uOdd
v.CopyTo(ueven);
// Start the iteration
var iterationNumber = 0;
//.........这里部分代码省略.........
示例8: Multiply
/// <summary>
/// return a * b
/// </summary>
/// <param name="a"></param>
/// <param name="b"></param>
/// <returns></returns>
public static Matrix Multiply(Matrix a, Matrix b) {
a.ShouldNotBeNull("a");
b.ShouldNotBeNull("b");
Guard.Assert(a.Cols == b.Rows, "Matrix dimension is not match. a.Cols equals b.Rows for Multipling.");
var result = new Matrix(a.Rows, b.Cols);
result.Multiply(a, b);
return result;
}
示例9: Solve
//.........这里部分代码省略.........
Vector nu = new DenseVector(residuals.Count);
Vector vecS = new DenseVector(residuals.Count);
Vector vecSdash = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
// create some temporary double variables that are needed
// to hold values in between iterations
Complex currentRho = 0;
Complex alpha = 0;
Complex omega = 0;
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, result, input, residuals))
{
// rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
var oldRho = currentRho;
currentRho = tempResiduals.DotProduct(residuals);
// if (rho_(i-1) == 0) // METHOD FAILS
// If rho is only 1 ULP from zero then we fail.
if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
{
// Rho-type breakdown
throw new Exception("Iterative solver experience a numerical break down");
}
if (iterationNumber != 0)
{
// beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
var beta = (currentRho / oldRho) * (alpha / omega);
// p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
nu.Multiply(-omega, temp);
vecP.Add(temp, temp2);
temp2.CopyTo(vecP);
vecP.Multiply(beta, vecP);
vecP.Add(residuals, temp2);
temp2.CopyTo(vecP);
}
else
{
// p_i = r_(i-1)
residuals.CopyTo(vecP);
}
// SOLVE Mp~ = p_i // M = preconditioner
_preconditioner.Approximate(vecP, vecPdash);
// nu_i = Ap~
matrix.Multiply(vecPdash, nu);
// alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
alpha = currentRho * 1 / tempResiduals.DotProduct(nu);
// s = r_(i-1) - alpha_i nu_i
nu.Multiply(-alpha, temp);
residuals.Add(temp, vecS);
// Check if we're converged. If so then stop. Otherwise continue;
// Calculate the temporary result.
// Be careful not to change any of the temp vectors, except for
// temp. Others will be used in the calculation later on.
// x_i = x_(i-1) + alpha_i * p^_i + s^_i
vecPdash.Multiply(alpha, temp);
示例10: IterateBatch
//.........这里部分代码省略.........
for (int index = 0; index < ratings.Count; index++)
{
int user_id = ratings.Users[index];
int item_id = ratings.Items[index];
// prediction
float score = global_bias + user_bias[user_id] + item_bias[item_id];
score += DataType.MatrixExtensions.RowScalarProduct(user_factors, user_id, item_factors, item_id);
double sig_score = 1 / (1 + Math.Exp(-score));
float prediction = (float) (MinRating + sig_score * rating_range_size);
float error = prediction - ratings[index];
float gradient_common = compute_gradient_common(sig_score, error);
user_bias_gradient[user_id] += gradient_common;
item_bias_gradient[item_id] += gradient_common;
for (int f = 0; f < NumFactors; f++)
{
float u_f = user_factors[user_id, f];
float i_f = item_factors[item_id, f];
user_factors_gradient.Inc(user_id, f, gradient_common * i_f);
item_factors_gradient.Inc(item_id, f, gradient_common * u_f);
}
}
// I.2 L2 regularization
// biases
for (int u = 0; u < user_bias_gradient.Length; u++)
user_bias_gradient[u] += user_bias[u] * RegU * BiasReg;
for (int i = 0; i < item_bias_gradient.Length; i++)
item_bias_gradient[i] += item_bias[i] * RegI * BiasReg;
// latent factors
for (int u = 0; u < user_factors_gradient.dim1; u++)
for (int f = 0; f < user_factors_gradient.dim2; f++)
user_factors_gradient.Inc(u, f, user_factors[u, f] * RegU);
for (int i = 0; i < item_factors_gradient.dim1; i++)
for (int f = 0; f < item_factors_gradient.dim2; f++)
item_factors_gradient.Inc(i, f, item_factors[i, f] * RegI);
// I.3 social network regularization -- see eq. (13) in the paper
if (SocialRegularization != 0)
for (int u = 0; u < user_factors_gradient.dim1; u++)
{
var sum_connections = new float[NumFactors];
float bias_sum_connections = 0;
int num_connections = user_connections[u].Count;
foreach (int v in user_connections[u])
{
bias_sum_connections += user_bias[v];
for (int f = 0; f < sum_connections.Length; f++)
sum_connections[f] += user_factors[v, f];
}
if (num_connections != 0)
{
user_bias_gradient[u] += social_regularization * (user_bias[u] - bias_sum_connections / num_connections);
for (int f = 0; f < user_factors_gradient.dim2; f++)
user_factors_gradient.Inc(u, f, social_regularization * (user_factors[u, f] - sum_connections[f] / num_connections));
}
foreach (int v in user_reverse_connections[u])
{
float trust_v = (float) 1 / user_connections[v].Count;
float neg_trust_times_reg = -social_regularization * trust_v;
float bias_diff = 0;
var factor_diffs = new float[NumFactors];
foreach (int w in user_connections[v])
{
bias_diff -= user_bias[w];
for (int f = 0; f < factor_diffs.Length; f++)
factor_diffs[f] -= user_factors[w, f];
}
bias_diff *= trust_v; // normalize
bias_diff += user_bias[v];
user_bias_gradient[u] += neg_trust_times_reg * bias_diff;
for (int f = 0; f < factor_diffs.Length; f++)
{
factor_diffs[f] *= trust_v; // normalize
factor_diffs[f] += user_factors[v, f];
user_factors_gradient.Inc(u, f, neg_trust_times_reg * factor_diffs[f]);
}
}
}
// II. apply gradient descent step
for (int user_id = 0; user_id < user_factors_gradient.dim1; user_id++)
user_bias[user_id] -= user_bias_gradient[user_id] * LearnRate * BiasLearnRate;
for (int item_id = 0; item_id < item_factors_gradient.dim1; item_id++)
item_bias[item_id] -= item_bias_gradient[item_id] * LearnRate * BiasLearnRate;
user_factors_gradient.Multiply(-LearnRate);
user_factors.Inc(user_factors_gradient);
item_factors_gradient.Multiply(-LearnRate);
item_factors.Inc(item_factors_gradient);
}
示例11: Matrix4fSetRotationFromMatrix3f
private void Matrix4fSetRotationFromMatrix3f(ref Matrix transform, Matrix matrix)
{
float scale = transform.TempSVD();
transform.FromOtherMatrix(matrix, 3, 3);
transform.Multiply(scale, 3, 3);
}
示例12: TestMultiply
public void TestMultiply()
{
var matrix = new Matrix<double>(5, 5);
double[] row = { 1, 2, 3, 4, 5 };
for (int i = 0; i < 5; i++)
matrix.SetRow(i, row);
matrix.Multiply(2.5);
double[] testrow = { 2.5, 5, 7.5, 10, 12.5 };
Assert.AreEqual(testrow, matrix.GetRow(3));
}
示例13: weightUpdate
/// <summary>
/// After the forward and backward pass, the weights must be updated. This is done in this function.
/// </summary>
/// <param name="pat">input pattern</param>
/// <param name="dw">delta w, from last updates. Used to update weights1 after recalculation.</param>
/// <param name="dv">delta v, from last updates. Used to update weights2 after recalculation.</param>
private void weightUpdate(Matrix<float> pat, Matrix<float> dw, Matrix<float> dv, Matrix<float> targets)
{
/*
% weight update, MATLAB code
dw = (dw .* alpha) - (delta_h * pat') .* (1-alpha);
dv = (dv .* alpha) - (delta_o * hout') .* (1-alpha);
w = w + dw .* eta .* (1 + rand(1,1)/1000)';
v = v + dv .* eta .* (1 + rand(1,1)/1000)';
error(epoch) = sum(sum(abs(sign(out) - targets)./2));
*/
float alpha = 0.9f;
float eta = 0.1f;
dw = (dw.Multiply(alpha)).Subtract((net_deltah.Multiply(pat.Transpose())).Multiply(1 - alpha));
dv = (dv.Multiply(alpha)).Subtract((net_deltao.Multiply(net_hout.Transpose())).Multiply(1 - alpha));
weights1 += dw.Multiply(eta).Multiply(1 + DataManipulation.rand(1, 1)[0, 0] / 1000f);
weights2 += dv.Multiply(eta).Multiply(1 + DataManipulation.rand(1, 1)[0, 0] / 1000f);
Matrix<float> e1 = (MatrixSign(net_out) - targets).Multiply(0.5f).Multiply(new DenseMatrix(net_out.ColumnCount, 1, 1.0f)).Transpose().Multiply(new DenseMatrix(net_out.RowCount, 1, 1.0f));
double e = e1[0, 0];
e = e;
}
示例14: Solve
//.........这里部分代码省略.........
float beta = 0;
float sigma;
// Define the temporary vectors
// rDash_0 = r_0
Vector rdash = new DenseVector(residuals);
// t_-1 = 0
Vector t = new DenseVector(residuals.Count);
Vector t0 = new DenseVector(residuals.Count);
// w_-1 = 0
Vector w = new DenseVector(residuals.Count);
// Define the remaining temporary vectors
Vector c = new DenseVector(residuals.Count);
Vector p = new DenseVector(residuals.Count);
Vector s = new DenseVector(residuals.Count);
Vector u = new DenseVector(residuals.Count);
Vector y = new DenseVector(residuals.Count);
Vector z = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
Vector temp3 = new DenseVector(residuals.Count);
// for (k = 0, 1, .... )
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, xtemp, input, residuals))
{
// p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
p.Subtract(u, temp);
temp.Multiply(beta, temp2);
residuals.Add(temp2, p);
// Solve M b_k = p_k
_preconditioner.Approximate(p, temp);
// s_k = A b_k
matrix.Multiply(temp, s);
// alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
var alpha = rdash.DotProduct(residuals) / rdash.DotProduct(s);
// y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
s.Subtract(w, temp);
t.Subtract(residuals, y);
temp.Multiply(alpha, temp2);
y.Add(temp2, temp3);
temp3.CopyTo(y);
// Store the old value of t in t0
t.CopyTo(t0);
// t_k = r_k - alpha_k s_k
s.Multiply(-alpha, temp2);
residuals.Add(temp2, t);
// Solve M d_k = t_k
_preconditioner.Approximate(t, temp);
// c_k = A d_k
matrix.Multiply(temp, c);
var cdot = c.DotProduct(c);
示例15: CalculateTrueResidual
/// <summary>
/// Calculates the <c>true</c> residual of the matrix equation Ax = b according to: residual = b - Ax
/// </summary>
/// <param name="matrix">Instance of the <see cref="Matrix"/> A.</param>
/// <param name="residual">Residual values in <see cref="Vector"/>.</param>
/// <param name="x">Instance of the <see cref="Vector"/> x.</param>
/// <param name="b">Instance of the <see cref="Vector"/> b.</param>
private static void CalculateTrueResidual(Matrix matrix, Vector residual, Vector x, Vector b)
{
// -Ax = residual
matrix.Multiply(x, residual);
residual.Multiply(-1, residual);
// residual + b
residual.Add(b, residual);
}