本文整理汇总了C#中System.Matrix.SetValue方法的典型用法代码示例。如果您正苦于以下问题:C# Matrix.SetValue方法的具体用法?C# Matrix.SetValue怎么用?C# Matrix.SetValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Matrix
的用法示例。
在下文中一共展示了Matrix.SetValue方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: TestNot
public void TestNot()
{
Matrix<byte> m = new Matrix<byte>(10, 8);
m.SetValue(1.0);
m._Not();
byte[,] d2 = m.Data;
foreach (byte v in d2)
EmguAssert.IsTrue(254.0 == v);
}
示例2: Evaluate
public void Evaluate(int SpreadMax)
{
FStatus.SliceCount = SpreadMax;
FOutPositions1.SliceCount = SpreadMax;
FOutPositions2.SliceCount = SpreadMax;
for (int i = 0; i < SpreadMax; i++)
{
if (!FDo[i])
continue;
var input1 = FInput1[i];
var input2 = FInput2[i];
if (input1 == null || input2 == null)
continue;
if (!input1.Allocated || !input2.Allocated)
continue;
Matrix<byte> mask;
var matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(input2.Descriptors);
var indices = new Matrix<int>(input1.Descriptors.Rows, 2);
using (Matrix<float> distance = new Matrix<float>(input1.Descriptors.Rows, 2))
{
matcher.KnnMatch(input1.Descriptors, indices, distance, 2, null);
mask = new Matrix<byte>(distance.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(distance, FUniqueness[i], mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(input2.KeyPoints, input1.KeyPoints, indices, mask, 1.5, 20);
var positions1 = FOutPositions1[i];
var positions2 = FOutPositions2[i];
positions1.SliceCount = 0;
positions2.SliceCount = 0;
for (int j = 0; j < mask.Rows; j++)
{
if (mask[j, 0] != 0)
{
var index2 = indices[j, 0];
var point1 = input1.KeyPoints[j];
var point2 = input2.KeyPoints[index2];
positions1.Add(new Vector2D(point1.Point.X, point1.Point.Y));
positions2.Add(new Vector2D(point2.Point.X, point2.Point.Y));
}
}
}
}
示例3: Test
public static void Test()
{
Matrix mA = new Matrix(2, 3);
Matrix mB = new Matrix(3, 2);
Matrix mC = new Matrix(2, 2);
mA.SetValue(0, 0, 0.11);
mA.SetValue(0, 1, 0.12);
mA.SetValue(0, 2, 0.13);
mA.SetValue(1, 0, 0.21);
mA.SetValue(1, 1, 0.22);
mA.SetValue(1, 2, 0.23);
mB.SetValue(0, 0, 1011);
mB.SetValue(0, 1, 1012);
mB.SetValue(1, 0, 1021);
mB.SetValue(1, 1, 1022);
mB.SetValue(2, 0, 1031);
mB.SetValue(2, 1, 1032);
Blas.DGemm(Blas.TransposeType.NoTranspose, Blas.TransposeType.NoTranspose, 1.0, mA, mB, 0.0, ref mC);
Console.WriteLine(mC.GetValue(0, 0) + " , " + mC.GetValue(0, 1));
Console.WriteLine(mC.GetValue(1, 0) + " , " + mC.GetValue(1, 1));
}
示例4: Test2
public static void Test2()
{
const uint MARGIN = 1;
Matrix mA = new Matrix(2 + MARGIN, 3 + MARGIN);
Matrix mB = new Matrix(3, 2);
Matrix mC = new Matrix(2, 2);
mA.SetValue(0 + MARGIN, 0 + MARGIN, 0.11);
mA.SetValue(0 + MARGIN, 1 + MARGIN, 0.12);
mA.SetValue(0 + MARGIN, 2 + MARGIN, 0.13);
mA.SetValue(1 + MARGIN, 0 + MARGIN, 0.21);
mA.SetValue(1 + MARGIN, 1 + MARGIN, 0.22);
mA.SetValue(1 + MARGIN, 2 + MARGIN, 0.23);
mB.SetValue(0, 0, 1011);
mB.SetValue(0, 1, 1012);
mB.SetValue(1, 0, 1021);
mB.SetValue(1, 1, 1022);
mB.SetValue(2, 0, 1031);
mB.SetValue(2, 1, 1032);
MatrixView mViewA = new MatrixView(mA, MARGIN, MARGIN, mA.Columns - MARGIN, mA.Rows - MARGIN);
MatrixView mViewB = new MatrixView(mB, 0, 0, mB.Columns, mB.Rows);
MatrixView mViewC = new MatrixView(mC, 0, 0, mC.Columns, mC.Rows);
Blas.DGemm(Blas.TransposeType.NoTranspose, Blas.TransposeType.NoTranspose, 1.0, mViewA, mViewB, 0.0, ref mViewC);
Console.WriteLine(mC.GetValue(0, 0) + " , " + mC.GetValue(0, 1));
Console.WriteLine(mC.GetValue(1, 0) + " , " + mC.GetValue(1, 1));
}
示例5: Recognize
public bool Recognize(Image<Gray, Byte> observedImage, out PointF[] Region)
{
// extract features from the observed image
observedKeyPoints = new VectorOfKeyPoint();
Matrix<float> observedDescriptors = surfCPU.DetectAndCompute(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= requiredNonZeroCount)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, scaleIncrement, RotationBins);
if (nonZeroCount >= requiredNonZeroCount)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, ransacReprojThreshold);
}
bool ObjectFound;
if (homography != null)
{ //draw a rectangle along the projected model
Rectangle rect = modelImage.ROI;
Region = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)};
homography.ProjectPoints(Region);
ObjectFound = true;
}
else
{
Region = null;
ObjectFound = false;
}
return ObjectFound;
}
示例6: DrawResult
public Image<Bgr, byte> DrawResult(Image<Gray, byte> modelImage, Image<Gray, byte> observedImage,out double area, int minarea, out Point center)
{
//double estimated_dist =99999;
center = new Point(400, 224);
area = 0;
//modelImage.Save("D:\\temp\\modelimage.jpg");
//observedImage.Save("D:\\temp\\observedimage.jpg");
//单应矩阵
HomographyMatrix homography = null;
//surf算法检测器
var surfCpu = new SURFDetector(500, false);
//原图与实际图中的关键点
Matrix<byte> mask;
//knn匹配的系数
var k = 2;
//滤波系数
var uniquenessThreshold = 0.8;
//从标记图中,提取surf特征点与描述子
var modelKeyPoints = surfCpu.DetectKeyPointsRaw(modelImage, null);
var modelDescriptors = surfCpu.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
// 从实际图片提取surf特征点与描述子
var observedKeyPoints = surfCpu.DetectKeyPointsRaw(observedImage, null);
var observedDescriptors = surfCpu.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
if (observedDescriptors == null)
{
return null;
}
//使用BF匹配算法,匹配特征向量
//var bfmatcher = new BruteForceMatcher<float>(DistanceType.L2);
//bfmatcher.Add(modelDescriptors);
var indices = new Matrix<int>(observedDescriptors.Rows, k);
var flannMatcher = new Index(modelDescriptors, 4);
//通过特征向量筛选匹配对
using (var dist = new Matrix<float>(observedDescriptors.Rows, k))
{
//最近邻2点特征向量匹配
//bfmatcher.KnnMatch(observedDescriptors, indices, dist, k, null);
flannMatcher.KnnSearch(observedDescriptors, indices, dist, k, 24);
//匹配成功的,将特征点存入mask
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
//通过滤波系数,过滤非特征点,剩余特征点存入mask
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
var nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 10)
{
//过滤旋转与变形系数异常的特征点,剩余存入mask
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices,
mask, 1.5, 20);
if (nonZeroCount >= 10)
//使用剩余特征点,构建单应矩阵
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
observedKeyPoints, indices, mask, 2);
}
// }
//画出匹配的特征点
//Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,indices, new Bgr(0, 0, 255), new Bgr(0, 255, 0), mask, Features2DToolbox.KeypointDrawType.DEFAULT);
// result.Save("D:\\temp\\matchedpoints.jpg");
observedImage.ToBitmap();
var result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
indices, new Bgr(0, 0, 255), new Bgr(0, 255, 0), mask, Features2DToolbox.KeypointDrawType.DEFAULT);
#region draw the projected region on the Image
//画出单应矩阵
if (homography != null)
{
var rect = modelImage.ROI;
/*PointF[] pts = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)
};*/
var pts = new[]
{
new PointF(rect.Left + (rect.Right - rect.Left)/5, rect.Bottom - (rect.Bottom - rect.Top)/5),
new PointF(rect.Right - (rect.Right - rect.Left)/5, rect.Bottom - (rect.Bottom - rect.Top)/5),
new PointF(rect.Right - (rect.Right - rect.Left)/5, rect.Top + (rect.Bottom - rect.Top)/5),
new PointF(rect.Left + (rect.Right - rect.Left)/5, rect.Top + (rect.Bottom - rect.Top)/5)
};
//根据整个图片的旋转、变形情况,计算出原图中四个顶点转换后的坐标,并画出四边形
homography.ProjectPoints(pts);
area = Getarea(pts);
double xsum = 0;
double ysum = 0;
foreach (var point in pts)
//.........这里部分代码省略.........
示例7: testSIFT
public bool testSIFT(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage)
{
bool isFound = false;
HomographyMatrix homography = null;
SIFTDetector siftCPU = new SIFTDetector();
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
//extract features from the object image
modelKeyPoints = siftCPU.DetectKeyPointsRaw(modelImage, null);
Matrix<float> modelDescriptors = siftCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
// extract features from the observed image
observedKeyPoints = siftCPU.DetectKeyPointsRaw(observedImage, null);
Matrix<float> observedDescriptors = siftCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
//Draw the matched keypoints
Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);
#region draw the projected region on the image
if (homography != null)
{ //draw a rectangle along the projected model
Rectangle rect = modelImage.ROI;
PointF[] pts = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)};
homography.ProjectPoints(pts);
if (CvInvoke.cvCountNonZero(mask) >= 10)
isFound = true;
result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.LightGreen), 5);
}
#endregion
return isFound;
}
示例8: MultiplyInternal
private static Matrix MultiplyInternal(Vector3D left, Vector3D right)
{
var matrix = new Matrix(3, 3);
matrix.SetValue(0, 0, left.X * right.X);
matrix.SetValue(0, 1, left.X * right.Y);
matrix.SetValue(0, 2, left.X * right.Z);
matrix.SetValue(1, 0, left.Y * right.X);
matrix.SetValue(1, 1, left.Y * right.Y);
matrix.SetValue(1, 2, left.Y * right.Z);
matrix.SetValue(2, 0, left.Z * right.X);
matrix.SetValue(2, 1, left.Z * right.Y);
matrix.SetValue(2, 2, left.Z * right.Z);
return matrix;
}
示例9: FindMatch
public static void FindMatch(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, out Matrix<int> indices, out Matrix<byte> mask, out HomographyMatrix homography)
{
int k = 2;
double uniquenessThreshold = 0.8;
SURFDetector surfCPU = new SURFDetector(500, false);
Stopwatch watch;
homography = null;
//extract features from the object image
modelKeyPoints = new VectorOfKeyPoint();
Matrix<float> modelDescriptors = surfCPU.DetectAndCompute(modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
observedKeyPoints = new VectorOfKeyPoint();
Matrix<float> observedDescriptors = surfCPU.DetectAndCompute(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop();
matchTime = watch.ElapsedMilliseconds;
}
示例10: TestRTreesLetterRecognition
public void TestRTreesLetterRecognition()
{
Matrix<float> data, response;
ReadLetterRecognitionData(out data, out response);
int trainingSampleCount = (int) (data.Rows * 0.8);
Matrix<Byte> varType = new Matrix<byte>(data.Cols + 1, 1);
varType.SetValue((byte) MlEnum.VarType.Numerical); //the data is numerical
varType[data.Cols, 0] = (byte) MlEnum.VarType.Categorical; //the response is catagorical
Matrix<byte> sampleIdx = new Matrix<byte>(data.Rows, 1);
using (Matrix<byte> sampleRows = sampleIdx.GetRows(0, trainingSampleCount, 1))
sampleRows.SetValue(255);
using (RTrees forest = new RTrees())
using (TrainData td = new TrainData(data, MlEnum.DataLayoutType.RowSample, response, null, sampleIdx, null, varType))
{
forest.MaxDepth = 10;
forest.MinSampleCount = 10;
forest.RegressionAccuracy = 0.0f;
forest.UseSurrogates = false;
forest.MaxCategories = 15;
forest.CalculateVarImportance = true;
forest.ActiveVarCount = 4;
forest.TermCriteria = new MCvTermCriteria(100, 0.01f);
bool success = forest.Train(td);
if (!success)
return;
double trainDataCorrectRatio = 0;
double testDataCorrectRatio = 0;
for (int i = 0; i < data.Rows; i++)
{
using (Matrix<float> sample = data.GetRow(i))
{
double r = forest.Predict(sample, null);
r = Math.Abs(r - response[i, 0]);
if (r < 1.0e-5)
{
if (i < trainingSampleCount)
trainDataCorrectRatio++;
else
testDataCorrectRatio++;
}
}
}
trainDataCorrectRatio /= trainingSampleCount;
testDataCorrectRatio /= (data.Rows - trainingSampleCount);
StringBuilder builder = new StringBuilder("Variable Importance: ");
/*
using (Matrix<float> varImportance = forest.VarImportance)
{
for (int i = 0; i < varImportance.Cols; i++)
{
builder.AppendFormat("{0} ", varImportance[0, i]);
}
}*/
EmguAssert.WriteLine(String.Format("Prediction accuracy for training data :{0}%", trainDataCorrectRatio * 100));
EmguAssert.WriteLine(String.Format("Prediction accuracy for test data :{0}%", testDataCorrectRatio * 100));
EmguAssert.WriteLine(builder.ToString());
}
}
示例11: DrawBruteForceMatch
/// <summary>
/// Draw the model image and observed image, the matched features and homography projection.
/// </summary>
/// <param name="modelImageFileName">The model image</param>
/// <param name="observedImageBitmap">The observed image</param>
/// <param name="matchTime">The output total time for computing the homography matrix.</param>
/// <returns>The model image and observed image, the matched features and homography projection.</returns>
private System.Drawing.Point[] DrawBruteForceMatch(String modelImageFileName, Bitmap observedImageBitmap, out long matchTime)
{
try
{
Image<Gray, Byte> modelImage = new Image<Gray, byte>(modelImageFileName);
Image<Gray, Byte> observedImage = new Image<Gray, byte>(observedImageBitmap);
HomographyMatrix homography = null;
Stopwatch watch;
SURFDetector surfCPU = new SURFDetector(500, false);
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
//extract features from the object image
modelKeyPoints = surfCPU.DetectKeyPointsRaw(modelImage, null);
Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
observedKeyPoints = surfCPU.DetectKeyPointsRaw(observedImage, null);
Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k);
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop();
//Draw the matched keypoints
Image<Bgr, Byte> result = Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.DEFAULT);
System.Drawing.Point[] newpts = null;
#region draw the projected region on the image
if (homography != null)
{
//draw a rectangle along the projected model
Rectangle rect = modelImage.ROI;
PointF[] pts = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)};
homography.ProjectPoints(pts);
//result.DrawPolyline(Array.ConvertAll<PointF, System.Drawing.Point>(pts, System.Drawing.Point.Round), true, new Bgr(Color.Red), 2);
//result.Save(@"E:\1.jpg");
newpts = Array.ConvertAll<PointF, System.Drawing.Point>(pts, System.Drawing.Point.Round);
}
#endregion
matchTime = watch.ElapsedMilliseconds;
return newpts;
}
catch (Exception e)
{
Console.WriteLine(e.Message);
matchTime = 0;
return new System.Drawing.Point[] { new System.Drawing.Point(-1, -1), new System.Drawing.Point(-1, -1), new System.Drawing.Point(-1, -1), new System.Drawing.Point(-1, -1) };
}
}
示例12: Decompose
/// <summary>
/// Decomposes the specified matrix, using a QR decomposition.
/// </summary>
/// <param name="matrix">The matrix to decompose.</param>
public void Decompose(Matrix matrix)
{
qr = matrix.Clone();
diagonal = new double[qr.Columns];
// Main loop.
for (var k = 0; k < qr.Columns; k++)
{
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for (var i = k; i < qr.Rows; i++)
{
nrm = MathAlgorithms.Hypotenuse(nrm, qr[i, k]);
}
if (nrm != 0.0)
{
// Form k-th Householder vector.
if (qr.GetValue(k, k) < 0)
{
nrm = -nrm;
}
for (var i = k; i < qr.Rows; i++)
{
qr.SetValue(i, k, qr.GetValue(i, k) / nrm);
}
qr.SetValue(k, k, qr.GetValue(k, k) + 1.0);
// Apply transformation to remaining columns.
for (var j = k + 1; j < qr.Columns; j++)
{
var s = 0.0;
for (var i = k; i < qr.Rows; i++)
{
s += qr.GetValue(i, k) * qr.GetValue(i, j);
}
s = (-s) / qr.GetValue(k, k);
for (var i = k; i < qr.Rows; i++)
{
qr.SetValue(i, j, qr.GetValue(i, j) + (s * qr.GetValue(i, k)));
}
}
}
diagonal[k] = -nrm;
}
}
示例13: Decompose
/// <summary>
/// Decomposes the specified matrix using a LU decomposition.
/// </summary>
/// <param name="matrix">The matrix to decompose.</param>
public void Decompose(Matrix matrix)
{
LU = matrix.Clone();
pivots = new int[LU.Rows];
for (var i = 0; i < LU.Rows; i++)
{
pivots[i] = i;
}
pivotSign = 1;
var column = new double[LU.Rows];
for (var j = 0; j < LU.Columns; j++)
{
for (var i = 0; i < LU.Rows; i++)
{
column[i] = LU.GetValue(i, j);
}
// Apply previous transformations.
for (var i = 0; i < LU.Rows; i++)
{
// Most of the time is spent in the following dot product.
var kmax = Math.Min(i, j);
var s = 0.0;
for (var k = 0; k < kmax; k++)
{
s += LU.GetValue(i, k) * column[k];
}
LU.SetValue(i, j, column[i] - s);
column[i] -= s;
}
// Find pivot and exchange if necessary.
var p = j;
for (var i = j + 1; i < LU.Rows; i++)
{
if (Math.Abs(column[i]) > Math.Abs(column[p]))
{
p = i;
}
}
if (p != j)
{
for (var k = 0; k < LU.Columns; k++)
{
var t = LU[p, k];
LU.SetValue(p, k, LU[j, k]);
LU.SetValue(j, k, t);
}
Swapper.Swap(pivots, p, j);
pivotSign = -pivotSign;
}
// Compute multipliers.
if ((j < LU.Rows) && (LU.GetValue(j, j) != 0.0))
{
for (var i = j + 1; i < LU.Rows; i++)
{
LU.SetValue(i, j, LU.GetValue(i, j) / LU.GetValue(j, j));
}
}
}
}
示例14: Detect
public static Boolean Detect(ObjectDetectee observedScene, ObjectDetectee obj)
{
HomographyMatrix homography = null;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
int testsPassed = 0;
// extract features from the observed image
observedKeyPoints = observedScene.objectKeyPoints;
Matrix<float> observedDescriptors = observedScene.objectDescriptors;
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(obj.objectDescriptors);
if (observedDescriptors == null)
{
return false;
}
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZero = 0;
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(obj.objectKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
{
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(obj.objectKeyPoints, observedKeyPoints, indices, mask, 2);
for (int i = 0; i < mask.Height; i++)
{
for (int j = 0; j < mask.Width; j++)
{
if (mask[i, j] != 0)
{
nonZero++;
}
}
}
if (nonZero > 4)
{
testsPassed++;
}
}
}
if (homography != null)
{
//draw a rectangle along the projected model
Rectangle rect = obj.objectImage.ROI;
PointF[] pts = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)};
using (MemStorage m1 = new MemStorage())
using (MemStorage m2 = new MemStorage())
{
Contour<PointF> objPoly = new Contour<PointF>(m1);
Contour<PointF> scenePoly = new Contour<PointF>(m2);
pts.OrderBy(p => p.X).ThenBy(p => p.Y);
foreach (PointF i in pts)
{
objPoly.Push(i);
}
homography.ProjectPoints(pts);
pts.OrderBy(p => p.X).ThenBy(p => p.Y);
foreach (PointF i in pts)
{
scenePoly.Push(i);
}
double shapeMatch = CvInvoke.cvMatchShapes(objPoly, scenePoly, Emgu.CV.CvEnum.CONTOURS_MATCH_TYPE.CV_CONTOURS_MATCH_I3, 0);
double ratio = scenePoly.Area / objPoly.Area;
foreach (PointF i in pts)
{
if (i.X < 0 || i.Y < 0)
{
return false;
}
}
if (shapeMatch != 0 && shapeMatch <= 2)
{
testsPassed++;
}
if (ratio > 0.001 && ratio < 5.25)
{
testsPassed++;
}
//.........这里部分代码省略.........
示例15: TestCompare
public void TestCompare()
{
Matrix<float> f1 = new Matrix<float>(1, 380);
f1.SetValue(0.8);
Matrix<float> f2 = new Matrix<float>(f1.Size);
f2.SetValue(1.0);
Matrix<byte> mask1 = new Matrix<byte>(f1.Size);
CvInvoke.Compare(f1, f2, mask1, CvEnum.CmpType.LessEqual);
int total1 = CvInvoke.CountNonZero(mask1);
EmguAssert.IsTrue(total1 == f1.Width * f1.Height);
Matrix<Byte> mask2 = new Matrix<byte>(f1.Size);
using (ScalarArray ia = new ScalarArray(1.0))
{
CvInvoke.Compare(f1, ia, mask2, CvEnum.CmpType.LessEqual);
int total2 = CvInvoke.CountNonZero(mask2);
EmguAssert.IsTrue(total1 == total2);
}
}