当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.TestBit方法代码示例

本文整理汇总了C#中Org.BouncyCastle.Math.BigInteger.TestBit方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.TestBit方法的具体用法?C# BigInteger.TestBit怎么用?C# BigInteger.TestBit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Org.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.TestBit方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ImplShamirsTrick

		private static ECPoint ImplShamirsTrick(ECPoint P, BigInteger k,
			ECPoint Q, BigInteger l)
		{
			int m = System.Math.Max(k.BitLength, l.BitLength);
			ECPoint Z = P.Add(Q);
			ECPoint R = P.Curve.Infinity;

			for (int i = m - 1; i >= 0; --i)
			{
				R = R.Twice();

				if (k.TestBit(i))
				{
					if (l.TestBit(i))
					{
						R = R.Add(Z);
					}
					else
					{
						R = R.Add(P);
					}
				}
				else
				{
					if (l.TestBit(i))
					{
						R = R.Add(Q);
					}
				}
			}

			return R;
		}
开发者ID:nicecai,项目名称:iTextSharp-4.1.6,代码行数:33,代码来源:ECAlgorithms.cs

示例2: DHParameters

		public DHParameters(
			BigInteger				p,
			BigInteger				g,
			BigInteger				q,
			int						m,
			int						l,
			BigInteger				j,
			DHValidationParameters	validation)
		{
			if (p == null)
				throw new ArgumentNullException("p");
			if (g == null)
				throw new ArgumentNullException("g");
			if (!p.TestBit(0))
				throw new ArgumentException("field must be an odd prime", "p");
			if (g.CompareTo(BigInteger.Two) < 0
				|| g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
				throw new ArgumentException("generator must in the range [2, p - 2]", "g");
			if (q != null && q.BitLength >= p.BitLength)
				throw new ArgumentException("q too big to be a factor of (p-1)", "q");
			if (m >= p.BitLength)
				throw new ArgumentException("m value must be < bitlength of p", "m");
			if (l != 0)
			{ 
                // TODO Check this against the Java version, which has 'l > p.BitLength' here
	            if (l >= p.BitLength)
                	throw new ArgumentException("when l value specified, it must be less than bitlength(p)", "l");
				if (l < m)
					throw new ArgumentException("when l value specified, it may not be less than m value", "l");
			}
			if (j != null && j.CompareTo(BigInteger.Two) < 0)
				throw new ArgumentException("subgroup factor must be >= 2", "j");

			// TODO If q, j both provided, validate p = jq + 1 ?

			this.p = p;
			this.g = g;
			this.q = q;
			this.m = m;
			this.l = l;
			this.j = j;
			this.validation = validation;
        }
开发者ID:gkardava,项目名称:WinPass,代码行数:43,代码来源:DHParameters.cs

示例3: IsMRProbablePrime

        /**
         * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test
         * 
         * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
         * 
         * @param candidate
         *            the {@link BigInteger} instance to test for primality.
         * @param random
         *            the source of randomness to use to choose bases.
         * @param iterations
         *            the number of randomly-chosen bases to perform the test for.
         * @return <code>false</code> if any witness to compositeness is found amongst the chosen bases
         *         (so <code>candidate</code> is definitely NOT prime), or else <code>true</code>
         *         (indicating primality with some probability dependent on the number of iterations
         *         that were performed).
         */
        public static bool IsMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
        {
            CheckCandidate(candidate, "candidate");

            if (random == null)
                throw new ArgumentException("cannot be null", "random");
            if (iterations < 1)
                throw new ArgumentException("must be > 0", "iterations");

            if (candidate.BitLength == 2)
                return true;
            if (!candidate.TestBit(0))
                return false;

            BigInteger w = candidate;
            BigInteger wSubOne = candidate.Subtract(One);
            BigInteger wSubTwo = candidate.Subtract(Two);

            int a = wSubOne.GetLowestSetBit();
            BigInteger m = wSubOne.ShiftRight(a);

            for (int i = 0; i < iterations; ++i)
            {
                BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);

                if (!ImplMRProbablePrimeToBase(w, wSubOne, m, a, b))
                    return false;
            }

            return true;
        }
开发者ID:KimikoMuffin,项目名称:bc-csharp,代码行数:47,代码来源:Primes.cs

示例4: EnhancedMRProbablePrimeTest

        /**
         * FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
         * 
         * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an
         * alternative to {@link #isMRProbablePrime(BigInteger, SecureRandom, int)} that provides more
         * information about a composite candidate, which may be useful when generating or validating
         * RSA moduli.
         * 
         * @param candidate
         *            the {@link BigInteger} instance to test for primality.
         * @param random
         *            the source of randomness to use to choose bases.
         * @param iterations
         *            the number of randomly-chosen bases to perform the test for.
         * @return an {@link MROutput} instance that can be further queried for details.
         */
        public static MROutput EnhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
        {
            CheckCandidate(candidate, "candidate");

            if (random == null)
                throw new ArgumentNullException("random");
            if (iterations < 1)
                throw new ArgumentException("must be > 0", "iterations");

            if (candidate.BitLength == 2)
                return MROutput.ProbablyPrime();

            if (!candidate.TestBit(0))
                return MROutput.ProvablyCompositeWithFactor(Two);

            BigInteger w = candidate;
            BigInteger wSubOne = candidate.Subtract(One);
            BigInteger wSubTwo = candidate.Subtract(Two);

            int a = wSubOne.GetLowestSetBit();
            BigInteger m = wSubOne.ShiftRight(a);

            for (int i = 0; i < iterations; ++i)
            {
                BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
                BigInteger g = b.Gcd(w);

                if (g.CompareTo(One) > 0)
                    return MROutput.ProvablyCompositeWithFactor(g);

                BigInteger z = b.ModPow(m, w);

                if (z.Equals(One) || z.Equals(wSubOne))
                    continue;

                bool primeToBase = false;

                BigInteger x = z;
                for (int j = 1; j < a; ++j)
                {
                    z = z.ModPow(Two, w);

                    if (z.Equals(wSubOne))
                    {
                        primeToBase = true;
                        break;
                    }

                    if (z.Equals(One))
                        break;

                    x = z;
                }

                if (!primeToBase)
                {
                    if (!z.Equals(One))
                    {
                        x = z;
                        z = z.ModPow(Two, w);

                        if (!z.Equals(One))
                        {
                            x = z;
                        }
                    }

                    g = x.Subtract(One).Gcd(w);

                    if (g.CompareTo(One) > 0)
                        return MROutput.ProvablyCompositeWithFactor(g);

                    return MROutput.ProvablyCompositeNotPrimePower();
                }
            }

            return MROutput.ProbablyPrime();
        }
开发者ID:KimikoMuffin,项目名称:bc-csharp,代码行数:94,代码来源:Primes.cs

示例5: multiply

		private BigInteger multiply(
			BigInteger	X,
			BigInteger	Y)
		{
			BigInteger Z = BigInteger.Zero;
			BigInteger V = X;

			for (int i = 0; i < 128; ++i)
			{
				if (Y.TestBit(127 - i))
				{
					Z = Z.Xor(V);
				}

				bool lsb = V.TestBit(0);
				V = V.ShiftRight(1);
				if (lsb)
				{
					V = V.Xor(R);
				}
			}

			return Z;
		}
开发者ID:pusp,项目名称:o2platform,代码行数:24,代码来源:GCMBlockCipher.cs

示例6: Multiply

 /**
  * Simple shift-and-add multiplication. Serves as reference implementation
  * to verify (possibly faster) implementations in
  * {@link org.bouncycastle.math.ec.ECPoint ECPoint}.
  *
  * @param p
  *            The point to multiply.
  * @param k
  *            The multiplier.
  * @return The result of the point multiplication <code>kP</code>.
  */
 private ECPoint Multiply(ECPoint p, BigInteger k)
 {
     ECPoint q = p.Curve.Infinity;
     int t = k.BitLength;
     for (int i = 0; i < t; i++)
     {
         if (i != 0)
         {
             p = p.Twice();
         }
         if (k.TestBit(i))
         {
             q = q.Add(p);
         }
     }
     return q;
 }
开发者ID:jesusgarza,项目名称:bc-csharp,代码行数:28,代码来源:ECPointTest.cs

示例7: TestTestBit

		public void TestTestBit()
		{
			for (int i = 0; i < 10; ++i)
			{
				BigInteger n = new BigInteger(128, random);

				Assert.IsFalse(n.TestBit(128));
				Assert.IsTrue(n.Negate().TestBit(128));

				for (int j = 0; j < 10; ++j)
				{
					int pos = random.Next(128);
					bool test = n.ShiftRight(pos).Remainder(two).Equals(one);

					Assert.AreEqual(test, n.TestBit(pos));
				}
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:18,代码来源:BigIntegerTest.cs

示例8: TestBitCount

		public void TestBitCount()
		{
			Assert.AreEqual(0, zero.BitCount);
			Assert.AreEqual(1, one.BitCount);
			Assert.AreEqual(0, minusOne.BitCount);
			Assert.AreEqual(1, two.BitCount);
			Assert.AreEqual(1, minusTwo.BitCount);

			for (int i = 0; i < 100; ++i)
			{
				BigInteger pow2 = one.ShiftLeft(i);

				Assert.AreEqual(1, pow2.BitCount);
				Assert.AreEqual(i, pow2.Negate().BitCount);
			}

			for (int i = 0; i < 10; ++i)
			{
				BigInteger test = new BigInteger(128, 0, random);
				int bitCount = 0;

				for (int bit = 0; bit < test.BitLength; ++bit)
				{
					if (test.TestBit(bit))
					{
						++bitCount;
					}
				}

				Assert.AreEqual(bitCount, test.BitCount);
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:32,代码来源:BigIntegerTest.cs

示例9: TestShiftRight

		public void TestShiftRight()
		{
			for (int i = 0; i < 10; ++i)
			{
				int shift = random.Next(128);
				BigInteger a = new BigInteger(256 + i, random).SetBit(256 + i);
				BigInteger b = a.ShiftRight(shift);

				Assert.AreEqual(a.BitLength - shift, b.BitLength);

				for (int j = 0; j < b.BitLength; ++j)
				{
					Assert.AreEqual(a.TestBit(j + shift), b.TestBit(j));
				}
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:16,代码来源:BigIntegerTest.cs

示例10: TestShiftLeft

		public void TestShiftLeft()
		{
			for (int i = 0; i < 100; ++i)
			{
				int shift = random.Next(128);

				BigInteger a = new BigInteger(128 + i, random).Add(one);
				int bits = a.BitCount; // Make sure nBits is set

				BigInteger negA = a.Negate();
				bits = negA.BitCount; // Make sure nBits is set

				BigInteger b = a.ShiftLeft(shift);
				BigInteger c = negA.ShiftLeft(shift);

				Assert.AreEqual(a.BitCount, b.BitCount);
				Assert.AreEqual(negA.BitCount + shift, c.BitCount);
				Assert.AreEqual(a.BitLength + shift, b.BitLength);
				Assert.AreEqual(negA.BitLength + shift, c.BitLength);

				int j = 0;
				for (; j < shift; ++j)
				{
					Assert.IsFalse(b.TestBit(j));
				}

				for (; j < b.BitLength; ++j)
				{
					Assert.AreEqual(a.TestBit(j - shift), b.TestBit(j));
				}
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:32,代码来源:BigIntegerTest.cs


注:本文中的Org.BouncyCastle.Math.BigInteger.TestBit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。