本文整理汇总了C#中Org.BouncyCastle.Math.BigInteger.ShiftLeft方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.ShiftLeft方法的具体用法?C# BigInteger.ShiftLeft怎么用?C# BigInteger.ShiftLeft使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Org.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.ShiftLeft方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Multiply
public BigInteger Multiply(
BigInteger val)
{
if (sign == 0 || val.sign == 0)
return Zero;
if (val.QuickPow2Check()) // val is power of two
{
BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
return val.sign > 0 ? result : result.Negate();
}
if (this.QuickPow2Check()) // this is power of two
{
BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
return this.sign > 0 ? result : result.Negate();
}
int resLength = (this.BitLength + val.BitLength) / BitsPerInt + 1;
int[] res = new int[resLength];
if (val == this)
{
Square(res, this.magnitude);
}
else
{
Multiply(res, this.magnitude, val.magnitude);
}
return new BigInteger(sign * val.sign, res, true);
}
示例2: GenerateParameters_FIPS186_3
/**
* generate suitable parameters for DSA, in line with
* <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
*/
private DsaParameters GenerateParameters_FIPS186_3()
{
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
// FIXME This should be configurable (digest size in bits must be >= N)
IDigest d = new Sha256Digest();
int outlen = d.GetDigestSize() * 8;
// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
// the pair is not in the list, then return INVALID.
// Note: checked at initialisation
// 2. If (seedlen < N), then return INVALID.
// FIXME This should be configurable (must be >= N)
int seedlen = N;
byte[] seed = new byte[seedlen / 8];
// 3. n = ceiling(L ⁄ outlen) – 1.
int n = (L - 1) / outlen;
// 4. b = L – 1 – (n ∗ outlen).
int b = (L - 1) % outlen;
byte[] output = new byte[d.GetDigestSize()];
for (;;)
{
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
random.NextBytes(seed);
// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
Hash(d, seed, output);
BigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));
// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
BigInteger q = BigInteger.One.ShiftLeft(N - 1).Add(U).Add(BigInteger.One).Subtract(
U.Mod(BigInteger.Two));
// 8. Test whether or not q is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (!q.IsProbablePrime(certainty))
{
// 9. If q is not a prime, then go to step 5.
continue;
}
// 10. offset = 1.
// Note: 'offset' value managed incrementally
byte[] offset = Arrays.Clone(seed);
// 11. For counter = 0 to (4L – 1) do
int counterLimit = 4 * L;
for (int counter = 0; counter < counterLimit; ++counter)
{
// 11.1 For j = 0 to n do
// Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
// TODO Assemble w as a byte array
BigInteger W = BigInteger.Zero;
for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
{
Inc(offset);
Hash(d, offset, output);
BigInteger Vj = new BigInteger(1, output);
if (j == n)
{
Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
}
W = W.Add(Vj.ShiftLeft(exp));
}
// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
BigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));
// 11.4 c = X mod 2q.
BigInteger c = X.Mod(q.ShiftLeft(1));
// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
BigInteger p = X.Subtract(c.Subtract(BigInteger.One));
// 11.6 If (p < 2^(L - 1)), then go to step 11.9
if (p.BitLength != L)
continue;
// 11.7 Test whether or not p is prime as specified in Appendix C.3.
// TODO Review C.3 for primality checking
if (p.IsProbablePrime(certainty))
{
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
// (optionally) the values of domain_parameter_seed and counter.
// TODO Make configurable (8-bit unsigned)?
// int index = 1;
// BigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, index);
// if (g != null)
// {
// // TODO Should 'index' be a part of the validation parameters?
//.........这里部分代码省略.........
示例3: GenerateParameters_FIPS186_2
private DsaParameters GenerateParameters_FIPS186_2()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
Sha1Digest sha1 = new Sha1Digest();
int n = (L - 1) / 160;
byte[] w = new byte[L / 8];
for (;;)
{
random.NextBytes(seed);
Hash(sha1, seed, part1);
Array.Copy(seed, 0, part2, 0, seed.Length);
Inc(part2);
Hash(sha1, part2, part2);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
BigInteger q = new BigInteger(1, u);
if (!q.IsProbablePrime(certainty))
continue;
byte[] offset = Arrays.Clone(seed);
Inc(offset);
for (int counter = 0; counter < 4096; ++counter)
{
for (int k = 0; k < n; k++)
{
Inc(offset);
Hash(sha1, offset, part1);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Inc(offset);
Hash(sha1, offset, part1);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
BigInteger p = x.Subtract(c.Subtract(BigInteger.One));
if (p.BitLength != L)
continue;
if (p.IsProbablePrime(certainty))
{
BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
}
}
}
示例4: ModPowMonty
private static BigInteger ModPowMonty(BigInteger b, BigInteger e, BigInteger m, bool convert)
{
int n = m.magnitude.Length;
int powR = 32 * n;
bool smallMontyModulus = m.BitLength + 2 <= powR;
uint mDash = (uint)m.GetMQuote();
// tmp = this * R mod m
if (convert)
{
b = b.ShiftLeft(powR).Remainder(m);
}
int[] yAccum = new int[n + 1];
int[] zVal = b.magnitude;
Debug.Assert(zVal.Length <= n);
if (zVal.Length < n)
{
int[] tmp = new int[n];
zVal.CopyTo(tmp, n - zVal.Length);
zVal = tmp;
}
// Sliding window from MSW to LSW
int extraBits = 0;
// Filter the common case of small RSA exponents with few bits set
if (e.magnitude.Length > 1 || e.BitCount > 2)
{
int expLength = e.BitLength;
while (expLength > ExpWindowThresholds[extraBits])
{
++extraBits;
}
}
int numPowers = 1 << extraBits;
int[][] oddPowers = new int[numPowers][];
oddPowers[0] = zVal;
int[] zSquared = Arrays.Clone(zVal);
SquareMonty(yAccum, zSquared, m.magnitude, mDash, smallMontyModulus);
for (int i = 1; i < numPowers; ++i)
{
oddPowers[i] = Arrays.Clone(oddPowers[i - 1]);
MultiplyMonty(yAccum, oddPowers[i], zSquared, m.magnitude, mDash, smallMontyModulus);
}
int[] windowList = GetWindowList(e.magnitude, extraBits);
Debug.Assert(windowList.Length > 1);
int window = windowList[0];
int mult = window & 0xFF, lastZeroes = window >> 8;
int[] yVal;
if (mult == 1)
{
yVal = zSquared;
--lastZeroes;
}
else
{
yVal = Arrays.Clone(oddPowers[mult >> 1]);
}
int windowPos = 1;
while ((window = windowList[windowPos++]) != -1)
{
mult = window & 0xFF;
int bits = lastZeroes + BitLengthTable[mult];
for (int j = 0; j < bits; ++j)
{
SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
}
MultiplyMonty(yAccum, yVal, oddPowers[mult >> 1], m.magnitude, mDash, smallMontyModulus);
lastZeroes = window >> 8;
}
for (int i = 0; i < lastZeroes; ++i)
{
SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
}
if (convert)
{
// Return y * R^(-1) mod m
MontgomeryReduce(yVal, m.magnitude, mDash);
}
else if (smallMontyModulus && CompareTo(0, yVal, 0, m.magnitude) >= 0)
{
Subtract(0, yVal, 0, m.magnitude);
}
return new BigInteger(1, yVal, true);
//.........这里部分代码省略.........
示例5: Multiply
public BigInteger Multiply(
BigInteger val)
{
if (val == this)
return Square();
if ((sign & val.sign) == 0)
return Zero;
if (val.QuickPow2Check()) // val is power of two
{
BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
return val.sign > 0 ? result : result.Negate();
}
if (this.QuickPow2Check()) // this is power of two
{
BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
return this.sign > 0 ? result : result.Negate();
}
int resLength = magnitude.Length + val.magnitude.Length;
int[] res = new int[resLength];
Multiply(res, this.magnitude, val.magnitude);
int resSign = sign ^ val.sign ^ 1;
return new BigInteger(resSign, res, true);
}
示例6: GenerateParameters
/**
* which Generates the p and g values from the given parameters,
* returning the DsaParameters object.
* <p>
* Note: can take a while...</p>
*/
public DsaParameters GenerateParameters()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
Sha1Digest sha1 = new Sha1Digest();
int n = (size - 1) / 160;
byte[] w = new byte[size / 8];
BigInteger q = null, p = null, g = null;
int counter = 0;
bool primesFound = false;
while (!primesFound)
{
do
{
random.NextBytes(seed);
sha1.BlockUpdate(seed, 0, seed.Length);
sha1.DoFinal(part1, 0);
Array.Copy(seed, 0, part2, 0, seed.Length);
Add(part2, seed, 1);
sha1.BlockUpdate(part2, 0, part2.Length);
sha1.DoFinal(part2, 0);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
q = new BigInteger(1, u);
}
while (!q.IsProbablePrime(certainty));
counter = 0;
int offset = 2;
while (counter < 4096)
{
for (int k = 0; k < n; k++)
{
Add(part1, seed, offset + k);
sha1.BlockUpdate(part1, 0, part1.Length);
sha1.DoFinal(part1, 0);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Add(part1, seed, offset + n);
sha1.BlockUpdate(part1, 0, part1.Length);
sha1.DoFinal(part1, 0);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
p = x.Subtract(c.Subtract(BigInteger.One));
if (p.TestBit(size - 1))
{
if (p.IsProbablePrime(certainty))
{
primesFound = true;
break;
}
}
counter += 1;
offset += n + 1;
}
}
//
// calculate the generator g
//
BigInteger pMinusOneOverQ = p.Subtract(BigInteger.One).Divide(q);
for (;;)
{
BigInteger h = new BigInteger(size, random);
if (h.CompareTo(BigInteger.One) <= 0 || h.CompareTo(p.Subtract(BigInteger.One)) >= 0)
//.........这里部分代码省略.........
示例7: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
int minWeight = size >> 2;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.IsProbablePrime(certainty))
continue;
if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
continue;
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.RabinMillerTest(certainty, random))
continue;
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(p) < minWeight)
continue;
break;
}
}
return new BigInteger[] { p, q };
}
示例8: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.IsProbablePrime(certainty)
&& (certainty <= 2 || q.IsProbablePrime(certainty)))
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.RabinMillerTest(certainty, random)
&& (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
break;
}
}
return new BigInteger[] { p, q };
}
示例9: TestShiftLeft
public void TestShiftLeft()
{
for (int i = 0; i < 100; ++i)
{
int shift = random.Next(128);
BigInteger a = new BigInteger(128 + i, random).Add(one);
int bits = a.BitCount; // Make sure nBits is set
BigInteger negA = a.Negate();
bits = negA.BitCount; // Make sure nBits is set
BigInteger b = a.ShiftLeft(shift);
BigInteger c = negA.ShiftLeft(shift);
Assert.AreEqual(a.BitCount, b.BitCount);
Assert.AreEqual(negA.BitCount + shift, c.BitCount);
Assert.AreEqual(a.BitLength + shift, b.BitLength);
Assert.AreEqual(negA.BitLength + shift, c.BitLength);
int j = 0;
for (; j < shift; ++j)
{
Assert.IsFalse(b.TestBit(j));
}
for (; j < b.BitLength; ++j)
{
Assert.AreEqual(a.TestBit(j - shift), b.TestBit(j));
}
}
}
示例10: TestMultiply
public void TestMultiply()
{
BigInteger one = BigInteger.One;
Assert.AreEqual(one, one.Negate().Multiply(one.Negate()));
for (int i = 0; i < 100; ++i)
{
int aLen = 64 + random.Next(64);
int bLen = 64 + random.Next(64);
BigInteger a = new BigInteger(aLen, random).SetBit(aLen);
BigInteger b = new BigInteger(bLen, random).SetBit(bLen);
BigInteger c = new BigInteger(32, random);
BigInteger ab = a.Multiply(b);
BigInteger bc = b.Multiply(c);
Assert.AreEqual(ab.Add(bc), a.Add(c).Multiply(b));
Assert.AreEqual(ab.Subtract(bc), a.Subtract(c).Multiply(b));
}
// Special tests for power of two since uses different code path internally
for (int i = 0; i < 100; ++i)
{
int shift = random.Next(64);
BigInteger a = one.ShiftLeft(shift);
BigInteger b = new BigInteger(64 + random.Next(64), random);
BigInteger bShift = b.ShiftLeft(shift);
Assert.AreEqual(bShift, a.Multiply(b));
Assert.AreEqual(bShift.Negate(), a.Multiply(b.Negate()));
Assert.AreEqual(bShift.Negate(), a.Negate().Multiply(b));
Assert.AreEqual(bShift, a.Negate().Multiply(b.Negate()));
Assert.AreEqual(bShift, b.Multiply(a));
Assert.AreEqual(bShift.Negate(), b.Multiply(a.Negate()));
Assert.AreEqual(bShift.Negate(), b.Negate().Multiply(a));
Assert.AreEqual(bShift, b.Negate().Multiply(a.Negate()));
}
}
示例11: TestGetLowestSetBit
public void TestGetLowestSetBit()
{
for (int i = 0; i < 10; ++i)
{
BigInteger test = new BigInteger(128, 0, random).Add(one);
int bit1 = test.GetLowestSetBit();
Assert.AreEqual(test, test.ShiftRight(bit1).ShiftLeft(bit1));
int bit2 = test.ShiftLeft(i + 1).GetLowestSetBit();
Assert.AreEqual(i + 1, bit2 - bit1);
int bit3 = test.ShiftLeft(13 * i + 1).GetLowestSetBit();
Assert.AreEqual(13 * i + 1, bit3 - bit1);
}
}
示例12: GenerateSafePrimes
/// <summary>
/// Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
///
/// (see: Handbook of Applied Cryptography 4.86)
/// </summary>
/// <param name="size">The size.</param>
/// <param name="certainty">The certainty.</param>
/// <param name="random">The random.</param>
/// <returns></returns>
internal static IBigInteger[] GenerateSafePrimes(int size, int certainty, ISecureRandom random)
{
IBigInteger p, q;
var qLength = size - 1;
if (size <= 32)
{
for (; ; )
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (p.IsProbablePrime(certainty)
&& (certainty <= 2 || q.IsProbablePrime(certainty)))
break;
}
}
else
{
// Note: Modified from Java version for speed
for (; ; )
{
q = new BigInteger(qLength, 0, random);
retry:
for (var i = 0; i < _primeLists.Length; ++i)
{
var test = q.Remainder(_primeProductsBigs[i]).IntValue;
if (i == 0)
{
var rem3 = test % 3;
if (rem3 != 2)
{
var diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % _primeProductsInts[i];
}
}
var primeList = _primeLists[i];
foreach (var prime in primeList)
{
var qRem = test % prime;
if (qRem != 0 && qRem != (prime >> 1))
continue;
q = q.Add(_six);
goto retry;
}
}
if (q.BitLength != qLength)
continue;
if (!((BigInteger)q).RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (((BigInteger)p).RabinMillerTest(certainty, random)
&& (certainty <= 2 || ((BigInteger)q).RabinMillerTest(certainty - 2, random)))
break;
}
}
return new[] { p, q };
}