当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.ShiftLeft方法代码示例

本文整理汇总了C#中Org.BouncyCastle.Math.BigInteger.ShiftLeft方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.ShiftLeft方法的具体用法?C# BigInteger.ShiftLeft怎么用?C# BigInteger.ShiftLeft使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Org.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.ShiftLeft方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Multiply

		public BigInteger Multiply(
			BigInteger val)
		{
			if (sign == 0 || val.sign == 0)
				return Zero;

			if (val.QuickPow2Check()) // val is power of two
			{
				BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
				return val.sign > 0 ? result : result.Negate();
			}

			if (this.QuickPow2Check()) // this is power of two
			{
				BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
				return this.sign > 0 ? result : result.Negate();
			}

			int resLength = (this.BitLength + val.BitLength) / BitsPerInt + 1;
			int[] res = new int[resLength];

			if (val == this)
			{
				Square(res, this.magnitude);
			}
			else
			{
				Multiply(res, this.magnitude, val.magnitude);
			}

			return new BigInteger(sign * val.sign, res, true);
		}
开发者ID:VimalKumarS,项目名称:mono-tls,代码行数:32,代码来源:BigInteger.cs

示例2: GenerateParameters_FIPS186_3

		/**
		 * generate suitable parameters for DSA, in line with
		 * <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
		 */
		private DsaParameters GenerateParameters_FIPS186_3()
		{
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
			// FIXME This should be configurable (digest size in bits must be >= N)
			IDigest d = new Sha256Digest();
			int outlen = d.GetDigestSize() * 8;

// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
//    the pair is not in the list, then return INVALID.
			// Note: checked at initialisation
			
// 2. If (seedlen < N), then return INVALID.
			// FIXME This should be configurable (must be >= N)
			int seedlen = N;
			byte[] seed = new byte[seedlen / 8];

// 3. n = ceiling(L ⁄ outlen) – 1.
			int n = (L - 1) / outlen;

// 4. b = L – 1 – (n ∗ outlen).
			int b = (L - 1) % outlen;

			byte[] output = new byte[d.GetDigestSize()];
			for (;;)
			{
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
				random.NextBytes(seed);

// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
				Hash(d, seed, output);
				BigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));

// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
				BigInteger q = BigInteger.One.ShiftLeft(N - 1).Add(U).Add(BigInteger.One).Subtract(
					U.Mod(BigInteger.Two));

// 8. Test whether or not q is prime as specified in Appendix C.3.
				// TODO Review C.3 for primality checking
				if (!q.IsProbablePrime(certainty))
				{
// 9. If q is not a prime, then go to step 5.
					continue;
				}

// 10. offset = 1.
				// Note: 'offset' value managed incrementally
				byte[] offset = Arrays.Clone(seed);

// 11. For counter = 0 to (4L – 1) do
				int counterLimit = 4 * L;
				for (int counter = 0; counter < counterLimit; ++counter)
				{
// 11.1 For j = 0 to n do
//      Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
					// TODO Assemble w as a byte array
					BigInteger W = BigInteger.Zero;
					for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
					{
						Inc(offset);
						Hash(d, offset, output);

						BigInteger Vj = new BigInteger(1, output);
						if (j == n)
						{
							Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
						}

						W = W.Add(Vj.ShiftLeft(exp));
					}

// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
					BigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));

// 11.4 c = X mod 2q.
					BigInteger c = X.Mod(q.ShiftLeft(1));

// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
					BigInteger p = X.Subtract(c.Subtract(BigInteger.One));

					// 11.6 If (p < 2^(L - 1)), then go to step 11.9
					if (p.BitLength != L)
						continue;

// 11.7 Test whether or not p is prime as specified in Appendix C.3.
					// TODO Review C.3 for primality checking
					if (p.IsProbablePrime(certainty))
					{
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
//      (optionally) the values of domain_parameter_seed and counter.
						// TODO Make configurable (8-bit unsigned)?
//	                    int index = 1;
//	                    BigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, index);
//	                    if (g != null)
//	                    {
//	                        // TODO Should 'index' be a part of the validation parameters?
//.........这里部分代码省略.........
开发者ID:kungfubozo,项目名称:Bouncy-Castle-WP8,代码行数:101,代码来源:DsaParametersGenerator.cs

示例3: GenerateParameters_FIPS186_2

		private DsaParameters GenerateParameters_FIPS186_2()
		{
            byte[] seed = new byte[20];
            byte[] part1 = new byte[20];
            byte[] part2 = new byte[20];
            byte[] u = new byte[20];
            Sha1Digest sha1 = new Sha1Digest();
			int n = (L - 1) / 160;
			byte[] w = new byte[L / 8];

			for (;;)
			{
				random.NextBytes(seed);

				Hash(sha1, seed, part1);
				Array.Copy(seed, 0, part2, 0, seed.Length);
				Inc(part2);
				Hash(sha1, part2, part2);

				for (int i = 0; i != u.Length; i++)
				{
					u[i] = (byte)(part1[i] ^ part2[i]);
				}

				u[0] |= (byte)0x80;
				u[19] |= (byte)0x01;

				BigInteger q = new BigInteger(1, u);

				if (!q.IsProbablePrime(certainty))
					continue;

				byte[] offset = Arrays.Clone(seed);
				Inc(offset);

				for (int counter = 0; counter < 4096; ++counter)
				{
					for (int k = 0; k < n; k++)
					{
						Inc(offset);
						Hash(sha1, offset, part1);
						Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
					}

					Inc(offset);
					Hash(sha1, offset, part1);
					Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);

					w[0] |= (byte)0x80;

					BigInteger x = new BigInteger(1, w);

					BigInteger c = x.Mod(q.ShiftLeft(1));

					BigInteger p = x.Subtract(c.Subtract(BigInteger.One));

					if (p.BitLength != L)
						continue;

					if (p.IsProbablePrime(certainty))
					{
						BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);

						return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
					}
				}
			}
		}
开发者ID:kungfubozo,项目名称:Bouncy-Castle-WP8,代码行数:68,代码来源:DsaParametersGenerator.cs

示例4: ModPowMonty

        private static BigInteger ModPowMonty(BigInteger b, BigInteger e, BigInteger m, bool convert)
        {
            int n = m.magnitude.Length;
            int powR = 32 * n;
            bool smallMontyModulus = m.BitLength + 2 <= powR;
            uint mDash = (uint)m.GetMQuote();

            // tmp = this * R mod m
            if (convert)
            {
                b = b.ShiftLeft(powR).Remainder(m);
            }

            int[] yAccum = new int[n + 1];

            int[] zVal = b.magnitude;
            Debug.Assert(zVal.Length <= n);
            if (zVal.Length < n)
            {
                int[] tmp = new int[n];
                zVal.CopyTo(tmp, n - zVal.Length);
                zVal = tmp;
            }

            // Sliding window from MSW to LSW

            int extraBits = 0;

            // Filter the common case of small RSA exponents with few bits set
            if (e.magnitude.Length > 1 || e.BitCount > 2)
            {
                int expLength = e.BitLength;
                while (expLength > ExpWindowThresholds[extraBits])
                {
                    ++extraBits;
                }
            }

            int numPowers = 1 << extraBits;
            int[][] oddPowers = new int[numPowers][];
            oddPowers[0] = zVal;

            int[] zSquared = Arrays.Clone(zVal);
            SquareMonty(yAccum, zSquared, m.magnitude, mDash, smallMontyModulus);

            for (int i = 1; i < numPowers; ++i)
            {
                oddPowers[i] = Arrays.Clone(oddPowers[i - 1]);
                MultiplyMonty(yAccum, oddPowers[i], zSquared, m.magnitude, mDash, smallMontyModulus);
            }

            int[] windowList = GetWindowList(e.magnitude, extraBits);
            Debug.Assert(windowList.Length > 1);

            int window = windowList[0];
            int mult = window & 0xFF, lastZeroes = window >> 8;

            int[] yVal;
            if (mult == 1)
            {
                yVal = zSquared;
                --lastZeroes;
            }
            else
            {
                yVal = Arrays.Clone(oddPowers[mult >> 1]);
            }

            int windowPos = 1;
            while ((window = windowList[windowPos++]) != -1)
            {
                mult = window & 0xFF;

                int bits = lastZeroes + BitLengthTable[mult];
                for (int j = 0; j < bits; ++j)
                {
                    SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
                }

                MultiplyMonty(yAccum, yVal, oddPowers[mult >> 1], m.magnitude, mDash, smallMontyModulus);

                lastZeroes = window >> 8;
            }

            for (int i = 0; i < lastZeroes; ++i)
            {
                SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
            }

            if (convert)
            {
                // Return y * R^(-1) mod m
                MontgomeryReduce(yVal, m.magnitude, mDash);
            }
            else if (smallMontyModulus && CompareTo(0, yVal, 0, m.magnitude) >= 0)
            {
                Subtract(0, yVal, 0, m.magnitude);
            }

            return new BigInteger(1, yVal, true);
//.........这里部分代码省略.........
开发者ID:haf,项目名称:bc-csharp,代码行数:101,代码来源:BigInteger.cs

示例5: Multiply

        public BigInteger Multiply(
			BigInteger val)
		{
            if (val == this)
                return Square();

            if ((sign & val.sign) == 0)
				return Zero;

            if (val.QuickPow2Check()) // val is power of two
			{
				BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
				return val.sign > 0 ? result : result.Negate();
			}

			if (this.QuickPow2Check()) // this is power of two
			{
				BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
				return this.sign > 0 ? result : result.Negate();
			}

            int resLength = magnitude.Length + val.magnitude.Length;
            int[] res = new int[resLength];

            Multiply(res, this.magnitude, val.magnitude);

            int resSign = sign ^ val.sign ^ 1;
            return new BigInteger(resSign, res, true);
		}
开发者ID:haf,项目名称:bc-csharp,代码行数:29,代码来源:BigInteger.cs

示例6: GenerateParameters

        /**
         * which Generates the p and g values from the given parameters,
         * returning the DsaParameters object.
         * <p>
         * Note: can take a while...</p>
         */
        public DsaParameters GenerateParameters()
        {
            byte[]          seed = new byte[20];
            byte[]          part1 = new byte[20];
            byte[]          part2 = new byte[20];
            byte[]          u = new byte[20];
            Sha1Digest      sha1 = new Sha1Digest();
            int             n = (size - 1) / 160;
            byte[]          w = new byte[size / 8];

            BigInteger      q = null, p = null, g = null;
            int             counter = 0;
            bool         primesFound = false;

            while (!primesFound)
            {
                do
                {
                    random.NextBytes(seed);

                    sha1.BlockUpdate(seed, 0, seed.Length);

                    sha1.DoFinal(part1, 0);

                    Array.Copy(seed, 0, part2, 0, seed.Length);

                    Add(part2, seed, 1);

                    sha1.BlockUpdate(part2, 0, part2.Length);

                    sha1.DoFinal(part2, 0);

                    for (int i = 0; i != u.Length; i++)
                    {
                        u[i] = (byte)(part1[i] ^ part2[i]);
                    }

                    u[0] |= (byte)0x80;
                    u[19] |= (byte)0x01;

                    q = new BigInteger(1, u);
                }
                while (!q.IsProbablePrime(certainty));

                counter = 0;

                int offset = 2;

                while (counter < 4096)
                {
                    for (int k = 0; k < n; k++)
                    {
                        Add(part1, seed, offset + k);
                        sha1.BlockUpdate(part1, 0, part1.Length);
                        sha1.DoFinal(part1, 0);
                        Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
                    }

                    Add(part1, seed, offset + n);
                    sha1.BlockUpdate(part1, 0, part1.Length);
                    sha1.DoFinal(part1, 0);
                    Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);

                    w[0] |= (byte)0x80;

                    BigInteger  x = new BigInteger(1, w);

                    BigInteger  c = x.Mod(q.ShiftLeft(1));

                    p = x.Subtract(c.Subtract(BigInteger.One));

                    if (p.TestBit(size - 1))
                    {
                        if (p.IsProbablePrime(certainty))
                        {
                            primesFound = true;
                            break;
                        }
                    }

                    counter += 1;
                    offset += n + 1;
                }
            }

            //
            // calculate the generator g
            //
            BigInteger  pMinusOneOverQ = p.Subtract(BigInteger.One).Divide(q);

            for (;;)
            {
                BigInteger h = new BigInteger(size, random);
                if (h.CompareTo(BigInteger.One) <= 0 || h.CompareTo(p.Subtract(BigInteger.One)) >= 0)
//.........这里部分代码省略.........
开发者ID:pusp,项目名称:o2platform,代码行数:101,代码来源:DsaParametersGenerator.cs

示例7: GenerateSafePrimes

        /*
         * Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
         * 
         * (see: Handbook of Applied Cryptography 4.86)
         */
        internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
        {
            BigInteger p, q;
            int qLength = size - 1;
            int minWeight = size >> 2;

            if (size <= 32)
            {
                for (;;)
                {
                    q = new BigInteger(qLength, 2, random);

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.IsProbablePrime(certainty))
                        continue;

                    if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
                        continue;

                    break;
                }
            }
            else
            {
                // Note: Modified from Java version for speed
                for (;;)
                {
                    q = new BigInteger(qLength, 0, random);

                retry:
                    for (int i = 0; i < primeLists.Length; ++i)
                    {
                        int test = q.Remainder(BigPrimeProducts[i]).IntValue;

                        if (i == 0)
                        {
                            int rem3 = test % 3;
                            if (rem3 != 2)
                            {
                                int diff = 2 * rem3 + 2;
                                q = q.Add(BigInteger.ValueOf(diff));
                                test = (test + diff) % primeProducts[i];
                            }
                        }

                        int[] primeList = primeLists[i];
                        for (int j = 0; j < primeList.Length; ++j)
                        {
                            int prime = primeList[j];
                            int qRem = test % prime;
                            if (qRem == 0 || qRem == (prime >> 1))
                            {
                                q = q.Add(Six);
                                goto retry;
                            }
                        }
                    }

                    if (q.BitLength != qLength)
                        continue;

                    if (!q.RabinMillerTest(2, random))
                        continue;

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.RabinMillerTest(certainty, random))
                        continue;

                    if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
                        continue;

                    /*
                     * Require a minimum weight of the NAF representation, since low-weight primes may be
                     * weak against a version of the number-field-sieve for the discrete-logarithm-problem.
                     * 
                     * See "The number field sieve for integers of low weight", Oliver Schirokauer.
                     */
                    if (WNafUtilities.GetNafWeight(p) < minWeight)
                        continue;

                    break;
                }
            }

            return new BigInteger[] { p, q };
        }
开发者ID:ubberkid,项目名称:PeerATT,代码行数:93,代码来源:DHParametersHelper.cs

示例8: GenerateSafePrimes

        /*
         * Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
         * 
         * (see: Handbook of Applied Cryptography 4.86)
         */
        internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
		{
			BigInteger p, q;
			int qLength = size - 1;

			if (size <= 32)
			{
				for (;;)
				{
					q = new BigInteger(qLength, 2, random);

					p = q.ShiftLeft(1).Add(BigInteger.One);

					if (p.IsProbablePrime(certainty)
						&& (certainty <= 2 || q.IsProbablePrime(certainty)))
							break;
				}
			}
			else
			{
				// Note: Modified from Java version for speed
				for (;;)
				{
					q = new BigInteger(qLength, 0, random);

				retry:
					for (int i = 0; i < primeLists.Length; ++i)
					{
						int test = q.Remainder(BigPrimeProducts[i]).IntValue;

                        if (i == 0)
						{
							int rem3 = test % 3;
							if (rem3 != 2)
							{
								int diff = 2 * rem3 + 2;
								q = q.Add(BigInteger.ValueOf(diff));
								test = (test + diff) % primeProducts[i];
							}
						}

						int[] primeList = primeLists[i];
						for (int j = 0; j < primeList.Length; ++j)
						{
							int prime = primeList[j];
							int qRem = test % prime;
							if (qRem == 0 || qRem == (prime >> 1))
							{
								q = q.Add(Six);
								goto retry;
							}
						}
					}


					if (q.BitLength != qLength)
						continue;

					if (!q.RabinMillerTest(2, random))
						continue;

					p = q.ShiftLeft(1).Add(BigInteger.One);

					if (p.RabinMillerTest(certainty, random)
						&& (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
						break;
				}
			}

			return new BigInteger[] { p, q };
		}
开发者ID:Niladri24dutta,项目名称:itextsharp,代码行数:76,代码来源:DHParametersHelper.cs

示例9: TestShiftLeft

		public void TestShiftLeft()
		{
			for (int i = 0; i < 100; ++i)
			{
				int shift = random.Next(128);

				BigInteger a = new BigInteger(128 + i, random).Add(one);
				int bits = a.BitCount; // Make sure nBits is set

				BigInteger negA = a.Negate();
				bits = negA.BitCount; // Make sure nBits is set

				BigInteger b = a.ShiftLeft(shift);
				BigInteger c = negA.ShiftLeft(shift);

				Assert.AreEqual(a.BitCount, b.BitCount);
				Assert.AreEqual(negA.BitCount + shift, c.BitCount);
				Assert.AreEqual(a.BitLength + shift, b.BitLength);
				Assert.AreEqual(negA.BitLength + shift, c.BitLength);

				int j = 0;
				for (; j < shift; ++j)
				{
					Assert.IsFalse(b.TestBit(j));
				}

				for (; j < b.BitLength; ++j)
				{
					Assert.AreEqual(a.TestBit(j - shift), b.TestBit(j));
				}
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:32,代码来源:BigIntegerTest.cs

示例10: TestMultiply

		public void TestMultiply()
		{
			BigInteger one = BigInteger.One;

			Assert.AreEqual(one, one.Negate().Multiply(one.Negate()));

			for (int i = 0; i < 100; ++i)
			{
				int aLen = 64 + random.Next(64);
				int bLen = 64 + random.Next(64);

				BigInteger a = new BigInteger(aLen, random).SetBit(aLen);
				BigInteger b = new BigInteger(bLen, random).SetBit(bLen);
				BigInteger c = new BigInteger(32, random);

				BigInteger ab = a.Multiply(b);
				BigInteger bc = b.Multiply(c);

				Assert.AreEqual(ab.Add(bc), a.Add(c).Multiply(b));
				Assert.AreEqual(ab.Subtract(bc), a.Subtract(c).Multiply(b));
			}

			// Special tests for power of two since uses different code path internally
			for (int i = 0; i < 100; ++i)
			{
				int shift = random.Next(64);
				BigInteger a = one.ShiftLeft(shift);
				BigInteger b = new BigInteger(64 + random.Next(64), random);
				BigInteger bShift = b.ShiftLeft(shift);

				Assert.AreEqual(bShift, a.Multiply(b));
				Assert.AreEqual(bShift.Negate(), a.Multiply(b.Negate()));
				Assert.AreEqual(bShift.Negate(), a.Negate().Multiply(b));
				Assert.AreEqual(bShift, a.Negate().Multiply(b.Negate()));

				Assert.AreEqual(bShift, b.Multiply(a));
				Assert.AreEqual(bShift.Negate(), b.Multiply(a.Negate()));
				Assert.AreEqual(bShift.Negate(), b.Negate().Multiply(a));
				Assert.AreEqual(bShift, b.Negate().Multiply(a.Negate()));
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:41,代码来源:BigIntegerTest.cs

示例11: TestGetLowestSetBit

		public void TestGetLowestSetBit()
		{
			for (int i = 0; i < 10; ++i)
			{
				BigInteger test = new BigInteger(128, 0, random).Add(one);
				int bit1 = test.GetLowestSetBit();
				Assert.AreEqual(test, test.ShiftRight(bit1).ShiftLeft(bit1));
				int bit2 = test.ShiftLeft(i + 1).GetLowestSetBit();
				Assert.AreEqual(i + 1, bit2 - bit1);
				int bit3 = test.ShiftLeft(13 * i + 1).GetLowestSetBit();
				Assert.AreEqual(13 * i + 1, bit3 - bit1);
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:13,代码来源:BigIntegerTest.cs

示例12: GenerateSafePrimes

        /// <summary>
        /// Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
        /// 
        /// (see: Handbook of Applied Cryptography 4.86)
        /// </summary>
        /// <param name="size">The size.</param>
        /// <param name="certainty">The certainty.</param>
        /// <param name="random">The random.</param>
        /// <returns></returns>
        internal static IBigInteger[] GenerateSafePrimes(int size, int certainty, ISecureRandom random)
        {
            IBigInteger p, q;
            var qLength = size - 1;

            if (size <= 32)
            {
                for (; ; )
                {
                    q = new BigInteger(qLength, 2, random);

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (p.IsProbablePrime(certainty)
                        && (certainty <= 2 || q.IsProbablePrime(certainty)))
                        break;
                }
            }
            else
            {
                // Note: Modified from Java version for speed
                for (; ; )
                {
                    q = new BigInteger(qLength, 0, random);

                retry:
                    for (var i = 0; i < _primeLists.Length; ++i)
                    {
                        var test = q.Remainder(_primeProductsBigs[i]).IntValue;

                        if (i == 0)
                        {
                            var rem3 = test % 3;
                            if (rem3 != 2)
                            {
                                var diff = 2 * rem3 + 2;
                                q = q.Add(BigInteger.ValueOf(diff));
                                test = (test + diff) % _primeProductsInts[i];
                            }
                        }

                        var primeList = _primeLists[i];
                        foreach (var prime in primeList)
                        {
                            var qRem = test % prime;
                            if (qRem != 0 && qRem != (prime >> 1))
                                continue;

                            q = q.Add(_six);
                            goto retry;
                        }
                    }

                    if (q.BitLength != qLength)
                        continue;

                    if (!((BigInteger)q).RabinMillerTest(2, random))
                        continue;

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (((BigInteger)p).RabinMillerTest(certainty, random)
                        && (certainty <= 2 || ((BigInteger)q).RabinMillerTest(certainty - 2, random)))
                        break;
                }
            }

            return new[] { p, q };
        }
开发者ID:sanyaade-iot,项目名称:Schmoose-BouncyCastle,代码行数:78,代码来源:DHParametersHelper.cs


注:本文中的Org.BouncyCastle.Math.BigInteger.ShiftLeft方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。