当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.SetBit方法代码示例

本文整理汇总了C#中Org.BouncyCastle.Math.BigInteger.SetBit方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.SetBit方法的具体用法?C# BigInteger.SetBit怎么用?C# BigInteger.SetBit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Org.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.SetBit方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: TestSetBit

		public void TestSetBit()
		{
			Assert.AreEqual(one, zero.SetBit(0));
			Assert.AreEqual(one, one.SetBit(0));
			Assert.AreEqual(three, two.SetBit(0));

			Assert.AreEqual(two, zero.SetBit(1));
			Assert.AreEqual(three, one.SetBit(1));
			Assert.AreEqual(two, two.SetBit(1));

			// TODO Tests for setting bits in negative numbers

			// TODO Tests for setting extended bits

			for (int i = 0; i < 10; ++i)
			{
				BigInteger n = new BigInteger(128, random);

				for (int j = 0; j < 10; ++j)
				{
					int pos = random.Next(128);
					BigInteger m = n.SetBit(pos);
					bool test = m.ShiftRight(pos).Remainder(two).Equals(one);

					Assert.IsTrue(test);
				}
			}

			for (int i = 0; i < 100; ++i)
			{
				BigInteger pow2 = one.ShiftLeft(i);
				BigInteger minusPow2 = pow2.Negate();

				Assert.AreEqual(pow2, pow2.SetBit(i));
				Assert.AreEqual(minusPow2, minusPow2.SetBit(i));

				BigInteger bigI = BigInteger.ValueOf(i);
				BigInteger negI = bigI.Negate();

				for (int j = 0; j < 10; ++j)
				{
					string data = "i=" + i + ", j=" + j;
					Assert.AreEqual(bigI.Or(one.ShiftLeft(j)), bigI.SetBit(j), data);
					Assert.AreEqual(negI.Or(one.ShiftLeft(j)), negI.SetBit(j), data);
				}
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:47,代码来源:BigIntegerTest.cs

示例2: GenerateParameters_FIPS186_3

        /**
         * generate suitable parameters for DSA, in line with
         * <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
         */
        protected virtual DsaParameters GenerateParameters_FIPS186_3()
        {
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
            IDigest d = digest;
            int outlen = d.GetDigestSize() * 8;

// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
//    the pair is not in the list, then return INVALID.
            // Note: checked at initialisation
            
// 2. If (seedlen < N), then return INVALID.
            // FIXME This should be configurable (must be >= N)
            int seedlen = N;
            byte[] seed = new byte[seedlen / 8];

// 3. n = ceiling(L ⁄ outlen) – 1.
            int n = (L - 1) / outlen;

// 4. b = L – 1 – (n ∗ outlen).
            int b = (L - 1) % outlen;

            byte[] output = new byte[d.GetDigestSize()];
            for (;;)
            {
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
                random.NextBytes(seed);

// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
                Hash(d, seed, output);
                BigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));

// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
                BigInteger q = U.SetBit(0).SetBit(N - 1);

// 8. Test whether or not q is prime as specified in Appendix C.3.
                // TODO Review C.3 for primality checking
                if (!q.IsProbablePrime(certainty))
                {
// 9. If q is not a prime, then go to step 5.
                    continue;
                }

// 10. offset = 1.
                // Note: 'offset' value managed incrementally
                byte[] offset = Arrays.Clone(seed);

// 11. For counter = 0 to (4L – 1) do
                int counterLimit = 4 * L;
                for (int counter = 0; counter < counterLimit; ++counter)
                {
// 11.1 For j = 0 to n do
//      Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
                    // TODO Assemble w as a byte array
                    BigInteger W = BigInteger.Zero;
                    for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
                    {
                        Inc(offset);
                        Hash(d, offset, output);

                        BigInteger Vj = new BigInteger(1, output);
                        if (j == n)
                        {
                            Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
                        }

                        W = W.Add(Vj.ShiftLeft(exp));
                    }

// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
                    BigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));

// 11.4 c = X mod 2q.
                    BigInteger c = X.Mod(q.ShiftLeft(1));

// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
                    BigInteger p = X.Subtract(c.Subtract(BigInteger.One));

                    // 11.6 If (p < 2^(L - 1)), then go to step 11.9
                    if (p.BitLength != L)
                        continue;

// 11.7 Test whether or not p is prime as specified in Appendix C.3.
                    // TODO Review C.3 for primality checking
                    if (p.IsProbablePrime(certainty))
                    {
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
//      (optionally) the values of domain_parameter_seed and counter.
                        // TODO Make configurable (8-bit unsigned)?

                        if (usageIndex >= 0)
                        {
                            BigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, usageIndex);
                            if (g != null)
                                return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter, usageIndex));
                        }
//.........这里部分代码省略.........
开发者ID:ALange,项目名称:OutlookPrivacyPlugin,代码行数:101,代码来源:DsaParametersGenerator.cs


注:本文中的Org.BouncyCastle.Math.BigInteger.SetBit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。