当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.Add方法代码示例

本文整理汇总了C#中Org.BouncyCastle.Math.BigInteger.Add方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Add方法的具体用法?C# BigInteger.Add怎么用?C# BigInteger.Add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Org.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.Add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ReduceBarrett

        private static BigInteger ReduceBarrett(BigInteger x, BigInteger m, BigInteger mr, BigInteger yu)
        {
            int xLen = x.BitLength, mLen = m.BitLength;
            if (xLen < mLen)
                return x;

            if (xLen - mLen > 1)
            {
                int k = m.magnitude.Length;

                BigInteger q1 = x.DivideWords(k - 1);
                BigInteger q2 = q1.Multiply(yu); // TODO Only need partial multiplication here
                BigInteger q3 = q2.DivideWords(k + 1);

                BigInteger r1 = x.RemainderWords(k + 1);
                BigInteger r2 = q3.Multiply(m); // TODO Only need partial multiplication here
                BigInteger r3 = r2.RemainderWords(k + 1);

                x = r1.Subtract(r3);
                if (x.sign < 0)
                {
                    x = x.Add(mr);
                }
            }

            while (x.CompareTo(m) >= 0)
            {
                x = x.Subtract(m);
            }

            return x;
        }
开发者ID:haf,项目名称:bc-csharp,代码行数:32,代码来源:BigInteger.cs

示例2: And

		public BigInteger And(
			BigInteger value)
		{
			if (this.sign == 0 || value.sign == 0)
			{
				return Zero;
			}

			int[] aMag = this.sign > 0
				? this.magnitude
				: Add(One).magnitude;

			int[] bMag = value.sign > 0
				? value.magnitude
				: value.Add(One).magnitude;

			bool resultNeg = sign < 0 && value.sign < 0;
			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
			int[] resultMag = new int[resultLength];

			int aStart = resultMag.Length - aMag.Length;
			int bStart = resultMag.Length - bMag.Length;

			for (int i = 0; i < resultMag.Length; ++i)
			{
				int aWord = i >= aStart ? aMag[i - aStart] : 0;
				int bWord = i >= bStart ? bMag[i - bStart] : 0;

				if (this.sign < 0)
				{
					aWord = ~aWord;
				}

				if (value.sign < 0)
				{
					bWord = ~bWord;
				}

				resultMag[i] = aWord & bWord;

				if (resultNeg)
				{
					resultMag[i] = ~resultMag[i];
				}
			}

			BigInteger result = new BigInteger(1, resultMag, true);

			// TODO Optimise this case
			if (resultNeg)
			{
				result = result.Not();
			}

			return result;
		}
开发者ID:VimalKumarS,项目名称:mono-tls,代码行数:56,代码来源:BigInteger.cs

示例3: Generate

        /// <summary>
        /// Generate a set of M-of-N parts for a specific private key.
        /// If desiredPrivKey is null, then a random key will be selected.
        /// </summary>
        public void Generate(int PartsNeededToDecode, int PartsToGenerate, byte[] desiredPrivKey)
        {
            if (PartsNeededToDecode > PartsToGenerate) {
                throw new ApplicationException("Number of parts needed exceeds number of parts to generate.");
            }

            if (PartsNeededToDecode > 8 || PartsToGenerate > 8) {
                throw new ApplicationException("Maximum number of parts is 8");
            }

            if (PartsNeededToDecode < 1 || PartsToGenerate < 1) {
                throw new ApplicationException("Minimum number of parts is 1");
            }

            if (desiredPrivKey != null && desiredPrivKey.Length != 32) {
                throw new ApplicationException("Desired private key must be 32 bytes");
            }

            KeyParts.Clear();
            decodedKeyParts.Clear();

            SecureRandom sr = new SecureRandom();

            // Get 8 random big integers into v[i].
            byte[][] vvv = new byte[8][];
            BigInteger[] v = new BigInteger[8];

            for (int i = 0; i < 8; i++) {
                byte[] b = new byte[32];
                sr.NextBytes(b, 0, 32);
                // For larger values of i, chop off some most-significant-bits to prevent overflows as they are
                // multiplied with increasingly larger factors.
                if (i >= 7) {
                    b[0] &= 0x7f;
                }
                v[i] = new BigInteger(1, b);
                Debug.WriteLine(String.Format("v({0})={1}", i, v[i].ToString()));

            }

            // if a certain private key is desired, then specify it.
            if (desiredPrivKey != null) {
                // replace v[0] with xor(v[1...7]) xor desiredPrivKey
                BigInteger newv0 = BigInteger.Zero;
                for (int i=1; i<PartsNeededToDecode; i++) {
                    newv0 = newv0.Xor(v[i]);
                }
                v[0] = newv0.Xor(new BigInteger(1,desiredPrivKey));

            }

            // Generate the expected private key from all the parts
            BigInteger privkey = new BigInteger("0");
            for (int i = 0; i < PartsNeededToDecode; i++) {
                privkey = privkey.Xor(v[i]);
            }

            // Get the bitcoin address
            byte[] keybytes = privkey.ToByteArrayUnsigned();
            // make sure we have 32 bytes, we'll need it
            if (keybytes.Length < 32) {
                byte[] array32 = new byte[32];
                Array.Copy(keybytes, 0, array32, 32 - keybytes.Length, keybytes.Length);
                keybytes = array32;
            }
            KeyPair = new KeyPair(keybytes);

            byte[] checksum = Util.ComputeSha256(BitcoinAddress);

            // Generate the parts
            for (int i = 0; i < PartsToGenerate; i++) {
                BigInteger total = new BigInteger("0");
                for (int j = 0; j < PartsNeededToDecode; j++) {

                    int factor = 1;
                    for (int ii = 0; ii <= i; ii++) factor = factor * (j + 1);

                    BigInteger bfactor = new BigInteger(factor.ToString());

                    total = total.Add(v[j].Multiply(bfactor));
                }

                Debug.WriteLine(String.Format(" pc{0}={1}", i, total.ToString()));
                byte[] parts = new byte[39];
                parts[0] = 0x4f;
                parts[1] = (byte)(0x93 + PartsNeededToDecode);
                int parts23 = (((checksum[0] << 8) + checksum[1]) & 0x1ff);
                Debug.WriteLine("checksum " + parts23.ToString());
                parts23 += 0x6000;
                parts23 += (i << 9);
                byte[] btotal = total.ToByteArrayUnsigned();
                for (int jj = 0; jj < btotal.Length; jj++) {
                    parts[jj + 4 + (35 - btotal.Length)] = btotal[jj];
                }

                parts[2] = (byte)((parts23 & 0xFF00) >> 8);
//.........这里部分代码省略.........
开发者ID:Groestlcoin,项目名称:Groestlcoin-Address-Utility,代码行数:101,代码来源:MofN.cs

示例4: IncrementSerial

 /// <summary>
 /// Increments the serial number in the serial file
 /// </summary>
 public void IncrementSerial()
 {
     String txt = File.ReadAllText(SerialFile);
     var bi = new BigInteger(txt, SerialNumberRadix);
     bi = bi.Add(BigInteger.One);
     File.WriteAllText(SerialFile, bi.ToString(SerialNumberRadix));
 }
开发者ID:naveedmurtuza,项目名称:crypto-tools,代码行数:10,代码来源:Repository.cs

示例5: GenerateSafePrimes

        /*
         * Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
         * 
         * (see: Handbook of Applied Cryptography 4.86)
         */
        internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
        {
            BigInteger p, q;
            int qLength = size - 1;
            int minWeight = size >> 2;

            if (size <= 32)
            {
                for (;;)
                {
                    q = new BigInteger(qLength, 2, random);

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.IsProbablePrime(certainty))
                        continue;

                    if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
                        continue;

                    break;
                }
            }
            else
            {
                // Note: Modified from Java version for speed
                for (;;)
                {
                    q = new BigInteger(qLength, 0, random);

                retry:
                    for (int i = 0; i < primeLists.Length; ++i)
                    {
                        int test = q.Remainder(BigPrimeProducts[i]).IntValue;

                        if (i == 0)
                        {
                            int rem3 = test % 3;
                            if (rem3 != 2)
                            {
                                int diff = 2 * rem3 + 2;
                                q = q.Add(BigInteger.ValueOf(diff));
                                test = (test + diff) % primeProducts[i];
                            }
                        }

                        int[] primeList = primeLists[i];
                        for (int j = 0; j < primeList.Length; ++j)
                        {
                            int prime = primeList[j];
                            int qRem = test % prime;
                            if (qRem == 0 || qRem == (prime >> 1))
                            {
                                q = q.Add(Six);
                                goto retry;
                            }
                        }
                    }

                    if (q.BitLength != qLength)
                        continue;

                    if (!q.RabinMillerTest(2, random))
                        continue;

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.RabinMillerTest(certainty, random))
                        continue;

                    if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
                        continue;

                    /*
                     * Require a minimum weight of the NAF representation, since low-weight primes may be
                     * weak against a version of the number-field-sieve for the discrete-logarithm-problem.
                     * 
                     * See "The number field sieve for integers of low weight", Oliver Schirokauer.
                     */
                    if (WNafUtilities.GetNafWeight(p) < minWeight)
                        continue;

                    break;
                }
            }

            return new BigInteger[] { p, q };
        }
开发者ID:ubberkid,项目名称:PeerATT,代码行数:93,代码来源:DHParametersHelper.cs

示例6: SolveRight

 public BigInteger SolveRight(BigInteger[] pcs)
 {
     BigInteger accum = new BigInteger("0");
         foreach (coefficient c in rightside) {
             BigInteger scratch = new BigInteger(pcs[c.vindex].ToString());
             scratch = scratch.Multiply(new BigInteger(c.multiplier.ToString()));
             accum = accum.Add(scratch);
         }
         return accum.Subtract(subtractor).Divide(new BigInteger(divisor.ToString())); ;
 }
开发者ID:Groestlcoin,项目名称:Groestlcoin-Address-Utility,代码行数:10,代码来源:MofN.cs

示例7: GenerateSafePrimes

        /*
         * Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
         * 
         * (see: Handbook of Applied Cryptography 4.86)
         */
        internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
		{
			BigInteger p, q;
			int qLength = size - 1;

			if (size <= 32)
			{
				for (;;)
				{
					q = new BigInteger(qLength, 2, random);

					p = q.ShiftLeft(1).Add(BigInteger.One);

					if (p.IsProbablePrime(certainty)
						&& (certainty <= 2 || q.IsProbablePrime(certainty)))
							break;
				}
			}
			else
			{
				// Note: Modified from Java version for speed
				for (;;)
				{
					q = new BigInteger(qLength, 0, random);

				retry:
					for (int i = 0; i < primeLists.Length; ++i)
					{
						int test = q.Remainder(BigPrimeProducts[i]).IntValue;

                        if (i == 0)
						{
							int rem3 = test % 3;
							if (rem3 != 2)
							{
								int diff = 2 * rem3 + 2;
								q = q.Add(BigInteger.ValueOf(diff));
								test = (test + diff) % primeProducts[i];
							}
						}

						int[] primeList = primeLists[i];
						for (int j = 0; j < primeList.Length; ++j)
						{
							int prime = primeList[j];
							int qRem = test % prime;
							if (qRem == 0 || qRem == (prime >> 1))
							{
								q = q.Add(Six);
								goto retry;
							}
						}
					}


					if (q.BitLength != qLength)
						continue;

					if (!q.RabinMillerTest(2, random))
						continue;

					p = q.ShiftLeft(1).Add(BigInteger.One);

					if (p.RabinMillerTest(certainty, random)
						&& (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
						break;
				}
			}

			return new BigInteger[] { p, q };
		}
开发者ID:Niladri24dutta,项目名称:itextsharp,代码行数:76,代码来源:DHParametersHelper.cs

示例8: btnCombine_Click

        private void btnCombine_Click(object sender, EventArgs e)
        {
            // What is input #1?

            string input1 = txtInput1.Text;
            string input2 = txtInput2.Text;
            PublicKey pub1 = null, pub2 = null;
            KeyPair kp1 = null, kp2 = null;

            if (KeyPair.IsValidPrivateKey(input1)) {
                pub1 = kp1 = new KeyPair(input1);
            } else if (PublicKey.IsValidPublicKey(input1)) {
                pub1 = new PublicKey(input1);
            } else {
                MessageBox.Show("Input key #1 is not a valid Public Key or Private Key Hex", "Can't combine", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return;
            }

            if (KeyPair.IsValidPrivateKey(input2)) {
                pub2 = kp2 = new KeyPair(input2);
            } else if (PublicKey.IsValidPublicKey(input2)) {
                pub2 = new PublicKey(input2);
            } else {
                MessageBox.Show("Input key #2 is not a valid Public Key or Private Key Hex", "Can't combine", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return;
            }

            if (kp1 == null && kp2 == null && rdoAdd.Checked == false) {
                MessageBox.Show("Can't multiply two public keys.  At least one of the keys must be a private key.",
                    "Can't combine", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return;
            }

            if (pub1.IsCompressedPoint != pub2.IsCompressedPoint) {
                MessageBox.Show("Can't combine a compressed key with an uncompressed key.", "Can't combine", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return;
            }

            if (pub1.AddressBase58 == pub2.AddressBase58) {
                if (MessageBox.Show("Both of the key inputs have the same public key hash.  You can continue, but " +
                   "the results are probably going to be wrong.  You might have provided the wrong " +
                   "information, such as two parts from the same side of the transaction, instead " +
                    "of one part from each side.  Continue anyway?", "Duplicate Key Warning", MessageBoxButtons.OKCancel, MessageBoxIcon.Warning) != DialogResult.OK) {
                    return;
                }

            }

            var ps = Org.BouncyCastle.Asn1.Sec.SecNamedCurves.GetByName("secp256k1");

            // Combining two private keys?
            if (kp1 != null && kp2 != null) {

                BigInteger e1 = new BigInteger(1, kp1.PrivateKeyBytes);
                BigInteger e2 = new BigInteger(1, kp2.PrivateKeyBytes);
                BigInteger ecombined = (rdoAdd.Checked ? e1.Add(e2) : e1.Multiply(e2)).Mod(ps.N);

                System.Diagnostics.Debug.WriteLine(kp1.PublicKeyHex);
                System.Diagnostics.Debug.WriteLine(kp2.PublicKeyHex);
                KeyPair kpcombined = new KeyPair(Util.Force32Bytes(ecombined.ToByteArrayUnsigned()), compressed: kp1.IsCompressedPoint);

                txtOutputAddress.Text = kpcombined.AddressBase58;
                txtOutputPubkey.Text = kpcombined.PublicKeyHex.Replace(" ", "");
                txtOutputPriv.Text = kpcombined.PrivateKeyBase58;

            } else if (kp1 != null || kp2 != null) {
                // Combining one public and one private

                KeyPair priv = (kp1 == null) ? kp2 : kp1;
                PublicKey pub = (kp1 == null) ? pub1 : pub2;

                ECPoint point = pub.GetECPoint();

                ECPoint combined = rdoAdd.Checked ? point.Add(priv.GetECPoint()) : point.Multiply(new BigInteger(1, priv.PrivateKeyBytes));
                ECPoint combinedc = ps.Curve.CreatePoint(combined.X.ToBigInteger(), combined.Y.ToBigInteger(), priv.IsCompressedPoint);
                PublicKey pkcombined = new PublicKey(combinedc.GetEncoded());
                txtOutputAddress.Text = pkcombined.AddressBase58;
                txtOutputPubkey.Text = pkcombined.PublicKeyHex.Replace(" ", "");
                txtOutputPriv.Text = "Only available when combining two private keys";
            } else {
                // Adding two public keys
                ECPoint combined = pub1.GetECPoint().Add(pub2.GetECPoint());
                ECPoint combinedc = ps.Curve.CreatePoint(combined.X.ToBigInteger(), combined.Y.ToBigInteger(), pub1.IsCompressedPoint);
                PublicKey pkcombined = new PublicKey(combinedc.GetEncoded());
                txtOutputAddress.Text = pkcombined.AddressBase58;
                txtOutputPubkey.Text = pkcombined.PublicKeyHex.Replace(" ", "");
                txtOutputPriv.Text = "Only available when combining two private keys";
            }
        }
开发者ID:Groestlcoin,项目名称:Groestlcoin-Address-Utility,代码行数:89,代码来源:KeyCombiner.cs

示例9: TestMultiply

		public void TestMultiply()
		{
			BigInteger one = BigInteger.One;

			Assert.AreEqual(one, one.Negate().Multiply(one.Negate()));

			for (int i = 0; i < 100; ++i)
			{
				int aLen = 64 + random.Next(64);
				int bLen = 64 + random.Next(64);

				BigInteger a = new BigInteger(aLen, random).SetBit(aLen);
				BigInteger b = new BigInteger(bLen, random).SetBit(bLen);
				BigInteger c = new BigInteger(32, random);

				BigInteger ab = a.Multiply(b);
				BigInteger bc = b.Multiply(c);

				Assert.AreEqual(ab.Add(bc), a.Add(c).Multiply(b));
				Assert.AreEqual(ab.Subtract(bc), a.Subtract(c).Multiply(b));
			}

			// Special tests for power of two since uses different code path internally
			for (int i = 0; i < 100; ++i)
			{
				int shift = random.Next(64);
				BigInteger a = one.ShiftLeft(shift);
				BigInteger b = new BigInteger(64 + random.Next(64), random);
				BigInteger bShift = b.ShiftLeft(shift);

				Assert.AreEqual(bShift, a.Multiply(b));
				Assert.AreEqual(bShift.Negate(), a.Multiply(b.Negate()));
				Assert.AreEqual(bShift.Negate(), a.Negate().Multiply(b));
				Assert.AreEqual(bShift, a.Negate().Multiply(b.Negate()));

				Assert.AreEqual(bShift, b.Multiply(a));
				Assert.AreEqual(bShift.Negate(), b.Multiply(a.Negate()));
				Assert.AreEqual(bShift.Negate(), b.Negate().Multiply(a));
				Assert.AreEqual(bShift, b.Negate().Multiply(a.Negate()));
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:41,代码来源:BigIntegerTest.cs

示例10: Derivate

        public Key Derivate(byte[] cc, uint nChild, out byte[] ccChild)
        {
            byte[] l = null;
            byte[] ll = new byte[32];
            byte[] lr = new byte[32];
            if((nChild >> 31) == 0)
            {
                var pubKey = PubKey.ToBytes();
                l = Hashes.BIP32Hash(cc, nChild, pubKey[0], pubKey.Skip(1).ToArray());
            }
            else
            {
                l = Hashes.BIP32Hash(cc, nChild, 0, this.ToBytes());
            }
            Array.Copy(l, ll, 32);
            Array.Copy(l, 32, lr, 0, 32);
            ccChild = lr;

            BigInteger parse256LL = new BigInteger(1, ll);
            BigInteger kPar = new BigInteger(1, vch);
            BigInteger N = ECKey.CURVE.N;

            if(parse256LL.CompareTo(N) >= 0)
                throw new InvalidOperationException("You won a prize ! this should happen very rarely. Take a screenshot, and roll the dice again.");
            var key = parse256LL.Add(kPar).Mod(N);
            if(key == BigInteger.Zero)
                throw new InvalidOperationException("You won the big prize ! this would happen only 1 in 2^127. Take a screenshot, and roll the dice again.");
            return new Key(key.ToByteArrayUnsigned());
        }
开发者ID:nikropht,项目名称:NBitcoin,代码行数:29,代码来源:Key.cs

示例11: TestModPow

		public void TestModPow()
		{
			try
			{
				two.ModPow(one, zero);
				Assert.Fail("expected ArithmeticException");
			}
			catch (ArithmeticException) {}

			Assert.AreEqual(zero, zero.ModPow(zero, one));
			Assert.AreEqual(one, zero.ModPow(zero, two));
			Assert.AreEqual(zero, two.ModPow(one, one));
			Assert.AreEqual(one, two.ModPow(zero, two));

			for (int i = 0; i < 10; ++i)
			{
				BigInteger m = BigInteger.ProbablePrime(10 + i * 3, random);
				BigInteger x = new BigInteger(m.BitLength - 1, random);

				Assert.AreEqual(x, x.ModPow(m, m));
				if (x.SignValue != 0)
				{
					Assert.AreEqual(zero, zero.ModPow(x, m));
					Assert.AreEqual(one, x.ModPow(m.Subtract(one), m));
				}

				BigInteger y = new BigInteger(m.BitLength - 1, random);
				BigInteger n = new BigInteger(m.BitLength - 1, random);
				BigInteger n3 = n.ModPow(three, m);

				BigInteger resX = n.ModPow(x, m);
				BigInteger resY = n.ModPow(y, m);
				BigInteger res = resX.Multiply(resY).Mod(m);
				BigInteger res3 = res.ModPow(three, m);

				Assert.AreEqual(res3, n3.ModPow(x.Add(y), m));

				BigInteger a = x.Add(one); // Make sure it's not zero
				BigInteger b = y.Add(one); // Make sure it's not zero

				Assert.AreEqual(a.ModPow(b, m).ModInverse(m), a.ModPow(b.Negate(), m));
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:43,代码来源:BigIntegerTest.cs

示例12: VerifySignature

        // 5.4 pg 29
        /**
         * return true if the value r and s represent a DSA signature for
         * the passed in message (for standard DSA the message should be
         * a SHA-1 hash of the real message to be verified).
         */
        public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
        {
            BigInteger n = key.Parameters.N;

            // r and s should both in the range [1,n-1]
            if (r.SignValue < 1 || s.SignValue < 1
                || r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
            {
                return false;
            }

            BigInteger e = CalculateE(n, message);
            BigInteger c = s.ModInverse(n);

            BigInteger u1 = e.Multiply(c).Mod(n);
            BigInteger u2 = r.Multiply(c).Mod(n);

            ECPoint G = key.Parameters.G;
            ECPoint Q = ((ECPublicKeyParameters) key).Q;

            ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);

            if (point.IsInfinity)
                return false;

            /*
             * If possible, avoid normalizing the point (to save a modular inversion in the curve field).
             * 
             * There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
             * If the cofactor is known and small, we generate those possible field values and project each
             * of them to the same "denominator" (depending on the particular projective coordinates in use)
             * as the calculated point.X. If any of the projected values matches point.X, then we have:
             *     (point.X / Denominator mod p) mod n == r
             * as required, and verification succeeds.
             * 
             * Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
             * the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
             */
            ECCurve curve = point.Curve;
            if (curve != null)
            {
                BigInteger cofactor = curve.Cofactor;
                if (cofactor != null && cofactor.CompareTo(Eight) <= 0)
                {
                    ECFieldElement D = GetDenominator(curve.CoordinateSystem, point);
                    if (D != null && !D.IsZero)
                    {
                        ECFieldElement X = point.XCoord;
                        while (curve.IsValidFieldElement(r))
                        {
                            ECFieldElement R = curve.FromBigInteger(r).Multiply(D);
                            if (R.Equals(X))
                            {
                                return true;
                            }
                            r = r.Add(n);
                        }
                        return false;
                    }
                }
            }

            BigInteger v = point.Normalize().AffineXCoord.ToBigInteger().Mod(n);
            return v.Equals(r);
        }
开发者ID:KimikoMuffin,项目名称:bc-csharp,代码行数:71,代码来源:ECDsaSigner.cs

示例13: Backdoor

		public void Backdoor()
		{
			var random = new SecureRandom();
			var curve = CustomNamedCurves.GetByName("secp521r1");
			var gen = new ECKeyPairGenerator("ECDSA");
			var G = curve.G;
			var N = curve.N;
			var paramz = new ECDomainParameters(curve.Curve, G, N);
			gen.Init(new ECKeyGenerationParameters(paramz, random));

			var kCalc = new RandomDsaKCalculator(); // kCalc generates random values [1, N-1]
			kCalc.Init(N, random);

			var attackersKeyPair = gen.GenerateKeyPair();

			var v = ((ECPrivateKeyParameters)attackersKeyPair.Private).D; //attacker's private
			var V = G.Multiply(v); //attackers public

			var usersKeyPair = gen.GenerateKeyPair(); //user's keypair
			var D = ((ECPrivateKeyParameters)usersKeyPair.Private).D; //user's private
			var Q = ((ECPublicKeyParameters)usersKeyPair.Public).Q;//user's public


			const string message1 = "First message to sign";
			var m1 = new BigInteger(1, Hash(Encoding.UTF8.GetBytes(message1))); // hash of m1

			//Generate signature 1
			var k1 = kCalc.NextK(); // k1 is true random
			var signaturePoint1 = G.Multiply(k1).Normalize();

			//(r1, s1) - signature 1
			var r1 = signaturePoint1.AffineXCoord.ToBigInteger().Mod(N);
			var s1 = k1.ModInverse(N).Multiply(m1.Add(D.Multiply(r1)));


			//verify signature 1
			var w = s1.ModInverse(N);
			var u1 = m1.Multiply(w).Mod(N);
			var u2 = r1.Multiply(w).Mod(N);
			var verifyPoint1 = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2).Normalize();

			var valid1 = verifyPoint1.AffineXCoord.ToBigInteger().Mod(N).Equals(r1);


			//Generate signature 2
			const string message2 = "Second message to sign";
			var m2 = new BigInteger(1, Hash(Encoding.UTF8.GetBytes(message2))); // hash of m2

			//here we generate a,b,h,e < N using seed = hash(m2)
			kCalc.Init(N, new SecureRandom(new SeededGenerator(Hash(Encoding.UTF8.GetBytes(message2)))));

			var a = kCalc.NextK();
			var b = kCalc.NextK();
			var h = kCalc.NextK();
			var e = kCalc.NextK();

			//u,j - true random
			var u = (random.Next() % 2) == 1 ? BigInteger.One : BigInteger.Zero;
			var j = (random.Next() % 2) == 1 ? BigInteger.One : BigInteger.Zero;

			//compute hidden field element
			var Z = G.Multiply(k1).Multiply(a)
				.Add(V.Multiply(k1).Multiply(b))
				.Add(G.Multiply(h).Multiply(j))
				.Add(V.Multiply(e).Multiply(u))
				.Normalize();

			var zX = Z.AffineXCoord.ToBigInteger().ToByteArray();

			var hash = Hash(zX);
			var k2 = new BigInteger(1, hash);
			var signaturePoint2 = G.Multiply(k2).Normalize();

			//(r2, s2) = signature 2
			var r2 = signaturePoint2.AffineXCoord.ToBigInteger().Mod(N);
			var s2 = k2.ModInverse(N).Multiply(m2.Add(D.Multiply(r2)));

			//verify signature 2

			w = s2.ModInverse(N);
			u1 = m2.Multiply(w).Mod(N);
			u2 = r2.Multiply(w).Mod(N);
			var verifyPoint2 = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2).Normalize();

			var valid2 = verifyPoint2.AffineXCoord.ToBigInteger().Mod(N).Equals(r2);

			if (valid1 && valid2)
			{
				//compute user's private key
				var d = ExtractUsersPrivateKey(G, N, message1, message2, r1, s1, r2, s2, v, V, Q);
				Console.WriteLine("Ecdsa private key restored: {0}", d.Equals(D));
			}
			else
			{
				Console.WriteLine("Something's wrong");
			}
		}
开发者ID:jorik041,项目名称:Kleptography.net,代码行数:97,代码来源:ECDSABackdoor.cs

示例14: GenerateSignature

        public void GenerateSignature(byte[] data_to_sign_byte_array, ref byte[] r_byte_array, ref byte[] s_byte_array)
        {
            if (data_to_sign_byte_array == null || data_to_sign_byte_array.Length < 1)
                throw new ArgumentException("GenerateSignature: The data byte array to sign cannot be null/empty");

            if (_private_key_param == null)
                throw new ArgumentException("GenerateSignature: The DSA private key cannot be null");

            if (_secure_random == null)
                _secure_random = new SecureRandom();

            BigInteger _data_to_sign = null;
            DsaParameters _parameters = null;
            BigInteger _k;
            BigInteger _r;
            BigInteger _s;
            int _q_bit_length;
            bool _do_again = false;
            int _failure_count = 0;

            _parameters = _private_key_param.Parameters;
            _data_to_sign = new BigInteger(1, data_to_sign_byte_array);
            _q_bit_length = _parameters.Q.BitLength;

            /*    */
               // if (IsValidPQLength(_parameters.P.BitLength, _parameters.Q.BitLength) == false)
            //throw new InvalidDataException("GenerateSignature: The Length of the DSA key P parameter does not correspond to that of the Q parameter");

            do
            {

                try
                {

                    do
                    {
                        _k = new BigInteger(1, _secure_random);

                    }
                    while (_k.CompareTo(_parameters.Q) >= 0);

                    _r = _parameters.G.ModPow(_k, _parameters.P).Mod(_parameters.Q);
                    _k = _k.ModInverse(_parameters.Q).Multiply(_data_to_sign.Add((_private_key_param).X.Multiply(_r)));
                    _s = _k.Mod(_parameters.Q);
                    r_byte_array = _r.ToByteArray();
                    s_byte_array = _s.ToByteArray();
                    _do_again = false;

                }

                catch (Exception)
                {
                    if (MAX_FAILURE_COUNT == _failure_count)
                   throw new InvalidDataException("GenerateSignature: Failed sign data after " + MAX_FAILURE_COUNT.ToString() + " tries.");
                    _do_again = true;
                    _failure_count++;

                }

            }
            while (_do_again == true);

            Utility.SetAsMinimalLengthBE(ref r_byte_array);
            Utility.SetAsMinimalLengthBE(ref s_byte_array);

            /*
            Console.WriteLine("Q Length {0} \n", _parameters.Q.BitLength/8);
            Console.WriteLine("R Length {0} \n", r_byte_array.Length);
            Console.WriteLine("S Length {0} \n", s_byte_array.Length);//*/
        }
开发者ID:zamud,项目名称:OTRLib,代码行数:70,代码来源:DSASigner.cs

示例15: GenerateSafePrimes

        /// <summary>
        /// Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
        /// 
        /// (see: Handbook of Applied Cryptography 4.86)
        /// </summary>
        /// <param name="size">The size.</param>
        /// <param name="certainty">The certainty.</param>
        /// <param name="random">The random.</param>
        /// <returns></returns>
        internal static IBigInteger[] GenerateSafePrimes(int size, int certainty, ISecureRandom random)
        {
            IBigInteger p, q;
            var qLength = size - 1;

            if (size <= 32)
            {
                for (; ; )
                {
                    q = new BigInteger(qLength, 2, random);

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (p.IsProbablePrime(certainty)
                        && (certainty <= 2 || q.IsProbablePrime(certainty)))
                        break;
                }
            }
            else
            {
                // Note: Modified from Java version for speed
                for (; ; )
                {
                    q = new BigInteger(qLength, 0, random);

                retry:
                    for (var i = 0; i < _primeLists.Length; ++i)
                    {
                        var test = q.Remainder(_primeProductsBigs[i]).IntValue;

                        if (i == 0)
                        {
                            var rem3 = test % 3;
                            if (rem3 != 2)
                            {
                                var diff = 2 * rem3 + 2;
                                q = q.Add(BigInteger.ValueOf(diff));
                                test = (test + diff) % _primeProductsInts[i];
                            }
                        }

                        var primeList = _primeLists[i];
                        foreach (var prime in primeList)
                        {
                            var qRem = test % prime;
                            if (qRem != 0 && qRem != (prime >> 1))
                                continue;

                            q = q.Add(_six);
                            goto retry;
                        }
                    }

                    if (q.BitLength != qLength)
                        continue;

                    if (!((BigInteger)q).RabinMillerTest(2, random))
                        continue;

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (((BigInteger)p).RabinMillerTest(certainty, random)
                        && (certainty <= 2 || ((BigInteger)q).RabinMillerTest(certainty - 2, random)))
                        break;
                }
            }

            return new[] { p, q };
        }
开发者ID:sanyaade-iot,项目名称:Schmoose-BouncyCastle,代码行数:78,代码来源:DHParametersHelper.cs


注:本文中的Org.BouncyCastle.Math.BigInteger.Add方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。