当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.Mod方法代码示例

本文整理汇总了C#中Org.BouncyCastle.Math.BigInteger.Mod方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Mod方法的具体用法?C# BigInteger.Mod怎么用?C# BigInteger.Mod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Org.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.Mod方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ChooseRandomPrime

        /// <summary>Choose a random prime value for use with RSA</summary>
        /// <param name="bitlength">the bit-length of the returned prime</param>
        /// <param name="e">the RSA public exponent</param>
        /// <returns>a prime p, with (p-1) relatively prime to e</returns>
        protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
        {
            for (;;)
            {
                BigInteger p = new BigInteger(bitlength, 1, param.Random);

                if (p.Mod(e).Equals(BigInteger.One))
                    continue;

                if (!p.IsProbablePrime(param.Certainty))
                    continue;

                if (!e.Gcd(p.Subtract(BigInteger.One)).Equals(BigInteger.One))
                    continue;

                return p;
            }
        }
开发者ID:MBrekhof,项目名称:pleiobox-clients,代码行数:22,代码来源:RsaKeyPairGenerator.cs

示例2: EscrowCodeSet

        /// <summary>
        /// Constructor which attempts to redeem a completed set of three codes, and calculate the private key.
        /// </summary>
        public EscrowCodeSet(string code1, string code2, string code3)
        {
            if (code1 == null || code2 == null || code3 == null || code1 == "" || code2 == "" || code3 == "") {
                throw new ArgumentException("Three codes are required to use this function.");
            }

            string codea = null, codeb=null, codep = null;

            if (code1.StartsWith("einva")) codea = code1;
            if (code2.StartsWith("einva")) codea = code2;
            if (code3.StartsWith("einva")) codea = code3;
            if (code1.StartsWith("einvb")) codeb = code1;
            if (code2.StartsWith("einvb")) codeb = code2;
            if (code3.StartsWith("einvb")) codeb = code3;
            if (code1.StartsWith("einvp")) codep = code1;
            if (code2.StartsWith("einvp")) codep = code2;
            if (code3.StartsWith("einvp")) codep = code3;

            if (codea==null || codeb == null || codep == null) {
                throw new ArgumentException("In order to use this function, one code MUST be an Escrow Invitation A (starting " +
                    "with \"einva\"), one must be an Escrow Invitation B (starting with \"einvb\") and the last " +
                    "code MUST be a Payment Invitation (starting with \"einvp\").");
            }

            byte[] pubparta, privparta;
            int identifier30a;
            string failreason = parseEscrowCode(codea, out pubparta, out privparta, out identifier30a);
            if (failreason != null) throw new ArgumentException("Escrow Invitation Code A: " + failreason);

            byte[] pubpartb, privpartb;
            int identifier30b;
            failreason = parseEscrowCode(codeb, out pubpartb, out privpartb, out identifier30b);
            if (failreason != null) throw new ArgumentException("Escrow Invitation Code B: " + failreason);

            if (identifier30a != identifier30b) {
                throw new ArgumentException("The two Escrow Invitations are not mates and cannot unlock the private key.");
            }

            string notvalid = "Not a valid Payment Invitation Code";
            string notvalid2 = "Code is not a valid Payment Invitation Code or may have a typo or other error.";
            string notvalid3 = "The Payment Invitation does not belong to the provided Escrow Invitation.";

            long headp;
            byte[] invbytesp;
            string failReason = parseEitherCode(codep, notvalid, notvalid2, out invbytesp, out headp);

            if (headp < headbaseP) throw new ArgumentException(notvalid);
            long identifier30L = headp - headbaseP;
            if (identifier30L < 0 || identifier30L > 0x3FFFFFFFL) throw new ArgumentException(notvalid);

            if (identifier30L != (long)identifier30a) {
                throw new ArgumentException("The Payment Invitation was not generated from either of the provided Escrow Invitation codes and cannot be unlocked by them.");
            }

            byte[] privpartz = new byte[32];
            Array.Copy(invbytesp, 8 + 1 + 1, privpartz, 0, 32);
            byte networkByte = invbytesp[8];
            bool compressedFlag = (invbytesp[8 + 1 + 1 + 32 + 20] & 0x1) == 1;

            // get private key
            BigInteger xyz = new BigInteger(1, privparta).Multiply(new BigInteger(1, privpartb)).Multiply(new BigInteger(1, privpartz));
            var ps = Org.BouncyCastle.Asn1.Sec.SecNamedCurves.GetByName("secp256k1");
            xyz = xyz.Mod(ps.N);

            KeyPair kp = new KeyPair(xyz, compressedFlag, networkByte);

            // provide everything
            this.EscrowInvitationCodeA = codea;
            this.EscrowInvitationCodeB = codeb;
            this.PaymentInvitationCode = codep;
            this.BitcoinAddress = kp.AddressBase58;
            this.PrivateKey = kp.PrivateKey;
        }
开发者ID:Carsten-Bit-Card,项目名称:Bit-Card-Tool,代码行数:76,代码来源:EscrowCode.cs

示例3: ValidatePublicValue

		public static BigInteger ValidatePublicValue(BigInteger N, BigInteger val)
		{
		    val = val.Mod(N);

	        // Check that val % N != 0
	        if (val.Equals(BigInteger.Zero))
	            throw new CryptoException("Invalid public value: 0");

		    return val;
		}
开发者ID:ktw,项目名称:OutlookPrivacyPlugin,代码行数:10,代码来源:SRP6Utilities.cs

示例4: Pair

        internal static BigInteger Pair(FpPoint Q, FpPoint P, BigInteger m, BigInteger p)
        {
            // TODO: napravi jebeno uparivanje!!!! - nešto zeza

            BigInteger pq = Miller(P, Q, m, p);
            BigInteger qp = Miller(Q, P, m, p);

            int parity = m.Mod(new BigInteger("2", 10)).IntValue;

            BigInteger rez = new BigInteger(Math.Pow(-1, parity).ToString(), 10).Multiply(pq.Divide(qp)).Mod(p);

            return rez;
        }
开发者ID:excrucio,项目名称:ibe,代码行数:13,代码来源:GeneralFunctions.cs

示例5: GenerateSignature

        /**
         * Generate a signature for the given message using the key we were
         * initialised with. For conventional DSA the message should be a SHA-1
         * hash of the message of interest.
         *
         * @param message the message that will be verified later.
         */
        public IBigInteger[] GenerateSignature(byte[] message)
        {
            var parameters = _key.Parameters;
            var q = parameters.Q;
            var m = CalculateE(q, message);
            IBigInteger k;
            do
            {
                k = new BigInteger(q.BitLength, _random);
            }
            while (k.CompareTo(q) >= 0);

            var r = parameters.G.ModPow(k, parameters.P).Mod(q);
            k = k.ModInverse(q).Multiply(m.Add(((DsaPrivateKeyParameters)_key).X.Multiply(r)));

            var s = k.Mod(q);

            return new[] { r, s };
        }
开发者ID:sanyaade-iot,项目名称:Schmoose-BouncyCastle,代码行数:26,代码来源:DsaSigner.cs

示例6: Encode

 public static string Encode(byte[] input)
 {
     var bi = new BigInteger(1, input);
     var s = new StringBuilder();
     while (bi.CompareTo(Base) >= 0)
     {
         var mod = bi.Mod(Base);
         s.Insert(0, new[] {Alphabet[mod.IntValue]});
         bi = bi.Subtract(mod).Divide(Base);
     }
     s.Insert(0, new[] {Alphabet[bi.IntValue]});
     // Convert leading zeros too.
     foreach (var anInput in input)
     {
         if (anInput == 0)
             s.Insert(0, new[] {Alphabet[0]});
         else
             break;
     }
     return s.ToString();
 }
开发者ID:carloslozano,项目名称:CoiniumServ,代码行数:21,代码来源:Base58.cs

示例7: Base58Encode

 /// <summary>
 /// Encode a byte sequence as a base58-encoded string
 /// </summary>
 /// <param name="bytes">Byte sequence</param>
 /// <returns>Encoding result</returns>
 public static string Base58Encode(byte[] input)
 {
     // TODO: This could be a lot more efficient.
     var bi = new BigInteger(1, input);
     var s = new StringBuilder();
     while (bi.CompareTo(_base) >= 0)
     {
         var mod = bi.Mod(_base);
         s.Insert(0, new[] { strDigits[mod.IntValue] });
         bi = bi.Subtract(mod).Divide(_base);
     }
     s.Insert(0, new[] { strDigits[bi.IntValue] });
     // Convert leading zeros too.
     foreach (var anInput in input)
     {
         if (anInput == 0)
             s.Insert(0, new[] { strDigits[0] });
         else
             break;
     }
     return s.ToString();
 }
开发者ID:CryptoManiac,项目名称:NovacoinLibrary,代码行数:27,代码来源:AddressTools.cs

示例8: ImplHasAnySmallFactors

        private static bool ImplHasAnySmallFactors(BigInteger x)
        {
            /*
             * Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
             */
            int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
            int r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 2) == 0 || (r % 3) == 0 || (r % 5) == 0 || (r % 7) == 0 || (r % 11) == 0 || (r % 13) == 0
                || (r % 17) == 0 || (r % 19) == 0 || (r % 23) == 0)
            {
                return true;
            }

            m = 29 * 31 * 37 * 41 * 43;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 29) == 0 || (r % 31) == 0 || (r % 37) == 0 || (r % 41) == 0 || (r % 43) == 0)
            {
                return true;
            }

            m = 47 * 53 * 59 * 61 * 67;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 47) == 0 || (r % 53) == 0 || (r % 59) == 0 || (r % 61) == 0 || (r % 67) == 0)
            {
                return true;
            }

            m = 71 * 73 * 79 * 83;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 71) == 0 || (r % 73) == 0 || (r % 79) == 0 || (r % 83) == 0)
            {
                return true;
            }

            m = 89 * 97 * 101 * 103;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 89) == 0 || (r % 97) == 0 || (r % 101) == 0 || (r % 103) == 0)
            {
                return true;
            }

            m = 107 * 109 * 113 * 127;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 107) == 0 || (r % 109) == 0 || (r % 113) == 0 || (r % 127) == 0)
            {
                return true;
            }

            m = 131 * 137 * 139 * 149;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 131) == 0 || (r % 137) == 0 || (r % 139) == 0 || (r % 149) == 0)
            {
                return true;
            }

            m = 151 * 157 * 163 * 167;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 151) == 0 || (r % 157) == 0 || (r % 163) == 0 || (r % 167) == 0)
            {
                return true;
            }

            m = 173 * 179 * 181 * 191;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 173) == 0 || (r % 179) == 0 || (r % 181) == 0 || (r % 191) == 0)
            {
                return true;
            }

            m = 193 * 197 * 199 * 211;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 193) == 0 || (r % 197) == 0 || (r % 199) == 0 || (r % 211) == 0)
            {
                return true;
            }

            /*
             * NOTE: Unit tests depend on SMALL_FACTOR_LIMIT matching the
             * highest small factor tested here.
             */
            return false;
        }
开发者ID:KimikoMuffin,项目名称:bc-csharp,代码行数:82,代码来源:Primes.cs

示例9: MightBePrime

 private static bool MightBePrime(BigInteger x)
 {
     /*
      * Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
      */
     int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
     int r = x.Mod(BigInteger.ValueOf(m)).IntValue;
     if ((r & 1) != 0 && (r % 3) != 0 && (r % 5) != 0 && (r % 7) != 0 && (r % 11) != 0
         && (r % 13) != 0 && (r % 17) != 0 && (r % 19) != 0 && (r % 23) != 0)
     {
         m = 29 * 31 * 37 * 41 * 43;
         r = x.Mod(BigInteger.ValueOf(m)).IntValue;
         if ((r % 29) != 0 && (r % 31) != 0 && (r % 37) != 0 && (r % 41) != 0 && (r % 43) != 0)
         {
             m = 47 * 53 * 59 * 61 * 67;
             r = x.Mod(BigInteger.ValueOf(m)).IntValue;
             if ((r % 47) != 0 && (r % 53) != 0 && (r % 59) != 0 && (r % 61) != 0 && (r % 67) != 0)
             {
                 m = 71 * 73 * 79 * 83;
                 r = x.Mod(BigInteger.ValueOf(m)).IntValue;
                 if ((r % 71) != 0 && (r % 73) != 0 && (r % 79) != 0 && (r % 83) != 0)
                 {
                     m = 89 * 97 * 101 * 103;
                     r = x.Mod(BigInteger.ValueOf(m)).IntValue;
                     if ((r % 89) != 0 && (r % 97) != 0 && (r % 101) != 0 && (r % 103) != 0)
                     {
                         m = 107 * 109 * 113 * 127;
                         r = x.Mod(BigInteger.ValueOf(m)).IntValue;
                         if ((r % 107) != 0 && (r % 109) != 0 && (r % 113) != 0 && (r % 127) != 0)
                         {
                             return true;
                         }
                     }
                 }
             }
         }
     }
     return false;
 }
开发者ID:d0ggyRul3z,项目名称:bc-csharp,代码行数:39,代码来源:Primes.cs

示例10: ToString

        public string ToString(
			int radix)
        {
            // TODO Make this method work for other radices (ideally 2 <= radix <= 16)

            switch (radix)
            {
                case 2:
                case 10:
                case 16:
                    break;
                default:
                    throw new FormatException("Only base 10 or 16 are allowed");
            }

            // NB: Can only happen to internally managed instances
            if (magnitude == null)
                return "null";

            if (sign == 0)
                return "0";

            Debug.Assert(magnitude.Length > 0);

            StringBuilder sb = new StringBuilder();

            if (radix == 16)
            {
                sb.Append(magnitude[0].ToString("x"));

                for (int i = 1; i < magnitude.Length; i++)
                {
                    sb.Append(magnitude[i].ToString("x8"));
                }
            }
            else if (radix == 2)
            {
                for (int i = BitLength - 1; i >= 0; --i)
                {
                    sb.Append(TestBit(i) ? '1' : '0');
                }
            }
            else
            {
                // This is algorithm 1a from chapter 4.4 in Seminumerical Algorithms, slow but it works
                Stack S = new Stack();
                BigInteger bs = ValueOf(radix);

                // The sign is handled separatly.
                // Notice however that for this to work, radix 16 _MUST_ be a special case,
                // unless we want to enter a recursion well. In their infinite wisdom, why did not
                // the Sun engineers made a c'tor for BigIntegers taking a BigInteger as parameter?
                // (Answer: Becuase Sun's BigIntger is clonable, something bouncycastle's isn't.)
                BigInteger u = new BigInteger(Abs().ToString(16), 16);
                BigInteger b;

                while (u.sign != 0)
                {
                    b = u.Mod(bs);
                    if (b.sign == 0)
                    {
                        S.Push("0");
                    }
                    else
                    {
                        // see how to interact with different bases
                        S.Push(b.magnitude[0].ToString("d"));
                    }
                    u = u.Divide(bs);
                }

                // Then pop the stack
                while (S.Count != 0)
                {
                    sb.Append((string) S.Pop());
                }
            }

            string s = sb.ToString();

            Debug.Assert(s.Length > 0);

            // Strip leading zeros. (We know this number is not all zeroes though)
            if (s[0] == '0')
            {
                int nonZeroPos = 0;
                while (s[++nonZeroPos] == '0') {}

                s = s.Substring(nonZeroPos);
            }

            if (sign == -1)
            {
                s = "-" + s;
            }

            return s;
        }
开发者ID:hjgode,项目名称:iTextSharpCF,代码行数:98,代码来源:BigInteger.cs

示例11: GenerateParameters_FIPS186_2

		private DsaParameters GenerateParameters_FIPS186_2()
		{
            byte[] seed = new byte[20];
            byte[] part1 = new byte[20];
            byte[] part2 = new byte[20];
            byte[] u = new byte[20];
            Sha1Digest sha1 = new Sha1Digest();
			int n = (L - 1) / 160;
			byte[] w = new byte[L / 8];

			for (;;)
			{
				random.NextBytes(seed);

				Hash(sha1, seed, part1);
				Array.Copy(seed, 0, part2, 0, seed.Length);
				Inc(part2);
				Hash(sha1, part2, part2);

				for (int i = 0; i != u.Length; i++)
				{
					u[i] = (byte)(part1[i] ^ part2[i]);
				}

				u[0] |= (byte)0x80;
				u[19] |= (byte)0x01;

				BigInteger q = new BigInteger(1, u);

				if (!q.IsProbablePrime(certainty))
					continue;

				byte[] offset = Arrays.Clone(seed);
				Inc(offset);

				for (int counter = 0; counter < 4096; ++counter)
				{
					for (int k = 0; k < n; k++)
					{
						Inc(offset);
						Hash(sha1, offset, part1);
						Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
					}

					Inc(offset);
					Hash(sha1, offset, part1);
					Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);

					w[0] |= (byte)0x80;

					BigInteger x = new BigInteger(1, w);

					BigInteger c = x.Mod(q.ShiftLeft(1));

					BigInteger p = x.Subtract(c.Subtract(BigInteger.One));

					if (p.BitLength != L)
						continue;

					if (p.IsProbablePrime(certainty))
					{
						BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);

						return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
					}
				}
			}
		}
开发者ID:kungfubozo,项目名称:Bouncy-Castle-WP8,代码行数:68,代码来源:DsaParametersGenerator.cs

示例12: ChooseRandomPrime

        /// <summary>Choose a random prime value for use with RSA</summary>
        /// <param name="bitlength">the bit-length of the returned prime</param>
        /// <param name="e">the RSA public exponent</param>
        /// <returns>a prime p, with (p-1) relatively prime to e</returns>
        protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
        {
            bool eIsKnownOddPrime = (e.BitLength <= SPECIAL_E_BITS) && Arrays.Contains(SPECIAL_E_VALUES, e.IntValue);

            for (;;)
            {
                BigInteger p = new BigInteger(bitlength, 1, parameters.Random);

                if (p.Mod(e).Equals(One))
                    continue;

                if (!p.IsProbablePrime(parameters.Certainty, true))
                    continue;

                if (!eIsKnownOddPrime && !e.Gcd(p.Subtract(One)).Equals(One))
                    continue;

                return p;
            }
        }
开发者ID:KimikoMuffin,项目名称:bc-csharp,代码行数:24,代码来源:RsaKeyPairGenerator.cs

示例13: TestMod

		public void TestMod()
		{
			// TODO Basic tests

			for (int rep = 0; rep < 100; ++rep)
			{
				int diff = random.Next(25);
				BigInteger a = new BigInteger(100 - diff, 0, random);
				BigInteger b = new BigInteger(100 + diff, 0, random);
				BigInteger c = new BigInteger(10 + diff, 0, random);

				BigInteger d = a.Multiply(b).Add(c);
				BigInteger e = d.Mod(a);
				Assert.AreEqual(c, e);

				BigInteger pow2 = one.ShiftLeft(random.Next(128));
				Assert.AreEqual(b.And(pow2.Subtract(one)), b.Mod(pow2));
			}
		}
开发者ID:randombit,项目名称:hacrypto,代码行数:19,代码来源:BigIntegerTest.cs

示例14: GenerateSignature

        public void GenerateSignature(byte[] data_to_sign_byte_array, ref byte[] r_byte_array, ref byte[] s_byte_array)
        {
            if (data_to_sign_byte_array == null || data_to_sign_byte_array.Length < 1)
                throw new ArgumentException("GenerateSignature: The data byte array to sign cannot be null/empty");

            if (_private_key_param == null)
                throw new ArgumentException("GenerateSignature: The DSA private key cannot be null");

            if (_secure_random == null)
                _secure_random = new SecureRandom();

            BigInteger _data_to_sign = null;
            DsaParameters _parameters = null;
            BigInteger _k;
            BigInteger _r;
            BigInteger _s;
            int _q_bit_length;
            bool _do_again = false;
            int _failure_count = 0;

            _parameters = _private_key_param.Parameters;
            _data_to_sign = new BigInteger(1, data_to_sign_byte_array);
            _q_bit_length = _parameters.Q.BitLength;

            /*    */
               // if (IsValidPQLength(_parameters.P.BitLength, _parameters.Q.BitLength) == false)
            //throw new InvalidDataException("GenerateSignature: The Length of the DSA key P parameter does not correspond to that of the Q parameter");

            do
            {

                try
                {

                    do
                    {
                        _k = new BigInteger(1, _secure_random);

                    }
                    while (_k.CompareTo(_parameters.Q) >= 0);

                    _r = _parameters.G.ModPow(_k, _parameters.P).Mod(_parameters.Q);
                    _k = _k.ModInverse(_parameters.Q).Multiply(_data_to_sign.Add((_private_key_param).X.Multiply(_r)));
                    _s = _k.Mod(_parameters.Q);
                    r_byte_array = _r.ToByteArray();
                    s_byte_array = _s.ToByteArray();
                    _do_again = false;

                }

                catch (Exception)
                {
                    if (MAX_FAILURE_COUNT == _failure_count)
                   throw new InvalidDataException("GenerateSignature: Failed sign data after " + MAX_FAILURE_COUNT.ToString() + " tries.");
                    _do_again = true;
                    _failure_count++;

                }

            }
            while (_do_again == true);

            Utility.SetAsMinimalLengthBE(ref r_byte_array);
            Utility.SetAsMinimalLengthBE(ref s_byte_array);

            /*
            Console.WriteLine("Q Length {0} \n", _parameters.Q.BitLength/8);
            Console.WriteLine("R Length {0} \n", r_byte_array.Length);
            Console.WriteLine("S Length {0} \n", s_byte_array.Length);//*/
        }
开发者ID:zamud,项目名称:OTRLib,代码行数:70,代码来源:DSASigner.cs

示例15: DecodeBlock

		/**
		* @exception InvalidCipherTextException if the decrypted block is not a valid ISO 9796 bit string
		*/
		private byte[] DecodeBlock(
			byte[]	input,
			int		inOff,
			int		inLen)
		{
			byte[]  block = engine.ProcessBlock(input, inOff, inLen);
			int     r = 1;
			int     t = (bitSize + 13) / 16;

			BigInteger iS = new BigInteger(1, block);
			BigInteger iR;
			if (iS.Mod(Sixteen).Equals(Six))
			{
				iR = iS;
			}
			else
			{
				iR = modulus.Subtract(iS);

				if (!iR.Mod(Sixteen).Equals(Six))
					throw new InvalidCipherTextException("resulting integer iS or (modulus - iS) is not congruent to 6 mod 16");
			}

			block = iR.ToByteArrayUnsigned();

			if ((block[block.Length - 1] & 0x0f) != 0x6)
				throw new InvalidCipherTextException("invalid forcing byte in block");

			block[block.Length - 1] =
				(byte)(((ushort)(block[block.Length - 1] & 0xff) >> 4)
				| ((inverse[(block[block.Length - 2] & 0xff) >> 4]) << 4));

			block[0] = (byte)((shadows[(uint) (block[1] & 0xff) >> 4] << 4)
				| shadows[block[1] & 0x0f]);

			bool boundaryFound = false;
			int boundary = 0;

			for (int i = block.Length - 1; i >= block.Length - 2 * t; i -= 2)
			{
				int val = ((shadows[(uint) (block[i] & 0xff) >> 4] << 4)
					| shadows[block[i] & 0x0f]);

				if (((block[i - 1] ^ val) & 0xff) != 0)
				{
					if (!boundaryFound)
					{
						boundaryFound = true;
						r = (block[i - 1] ^ val) & 0xff;
						boundary = i - 1;
					}
					else
					{
						throw new InvalidCipherTextException("invalid tsums in block");
					}
				}
			}

			block[boundary] = 0;

			byte[] nblock = new byte[(block.Length - boundary) / 2];

			for (int i = 0; i < nblock.Length; i++)
			{
				nblock[i] = block[2 * i + boundary + 1];
			}

			padBits = r - 1;

			return nblock;
		}
开发者ID:MBrekhof,项目名称:pleiobox-clients,代码行数:74,代码来源:ISO9796d1Encoding.cs


注:本文中的Org.BouncyCastle.Math.BigInteger.Mod方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。