当前位置: 首页>>代码示例>>C#>>正文


C# DenseMatrix.TransposeThisAndMultiply方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.TransposeThisAndMultiply方法的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix.TransposeThisAndMultiply方法的具体用法?C# DenseMatrix.TransposeThisAndMultiply怎么用?C# DenseMatrix.TransposeThisAndMultiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Double.DenseMatrix的用法示例。


在下文中一共展示了DenseMatrix.TransposeThisAndMultiply方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: PolynominalRegression

	/// <summary>
	/// Calculates polynom regression for xData = [0, 1, ... , n] and yData = [y1, y2, ... , yn].
	/// </summary>
	/// <param name="order">Order of output polynom.</param>
	public PolynominalRegression(DenseVector yData, int order)
	{
		_order = order;

		var vandMatrix = new DenseMatrix(yData.Count, order + 1);
		
		for (int i = 0; i < yData.Count; i++) 
		{
			double mult = 1;
			for (int j = 0; j < order + 1; j++)
			{
				vandMatrix[i, j] = mult;
				mult *= i;
			}
		}

		_coefs = vandMatrix.TransposeThisAndMultiply(vandMatrix).LU().Solve(TransposeAndMult(vandMatrix, yData));
	}
开发者ID:0xmono,项目名称:MathExpressions.NET,代码行数:22,代码来源:PolynominalRegression.cs

示例2: Q3_6Simulation

        private static Tuple<double, double> Q3_6Simulation(int k)
        {
            double lambda = Math.Pow(10, k);

              //load training set
              var trainingData = System.IO.File.ReadLines(@"c:/projects/studies/edx/cs1156x/net/hw6/in.dta").Select(
            line => line.Trim().Replace("   ", ",").Replace("  ", ",").Split(',').Select(v => Convert.ToDouble(v)).ToArray()).ToArray();

              //load test set
              var testData = System.IO.File.ReadLines(@"c:/projects/studies/edx/cs1156x/net/hw6/out.dta").Select(
            line => line.Trim().Replace("   ", ",").Replace("  ", ",").Split(',').Select(v => Convert.ToDouble(v)).ToArray()).ToArray();

              int N = trainingData.Length;
              var Z = new DenseMatrix(N, 8);
              var Y = new DenseVector(N);
              for (int j = 0; j < N; j++)
              {
            double x1 = trainingData[j][0], x2 = trainingData[j][1];
            Z[j, 0] = 1;
            Z[j, 1] = x1;
            Z[j, 2] = x2;
            Z[j, 3] = x1 * x1;
            Z[j, 4] = x2 * x2;
            Z[j, 5] = x1 * x2;
            Z[j, 6] = Math.Abs(x1 - x2);
            Z[j, 7] = Math.Abs(x1 + x2);

            Y[j] = trainingData[j][2];
              }

              var W = Z.TransposeThisAndMultiply(Z).Add(DenseMatrix.Identity(8).Multiply(lambda)).Inverse().TransposeAndMultiply(Z).Multiply(Y);

              Func<double, double, double> h = (x1, x2) =>
            W[0] + W[1] * x1 + W[2] * x2 + W[3] * x1 * x1 + W[4] * x2 * x2 + W[5] * x1 * x2
            + W[6] * Math.Abs(x1 - x2) + W[7] * Math.Abs(x1 + x2) >= 0 ? 1.0 : -1.0;

              double eIn = (trainingData.Count(v => Math.Sign(h(v[0], v[1])) != Math.Sign(v[2])) + 0.0) / trainingData.Length;
              double eOut = (testData.Count(v => Math.Sign(h(v[0], v[1])) != Math.Sign(v[2])) + 0.0) / testData.Length;

              return Tuple.Create(eIn, eOut);
        }
开发者ID:robinlan,项目名称:R-Study-Lists,代码行数:41,代码来源:HW6.cs

示例3: RunRegularizedRegression

        private static Tuple<double, double> RunRegularizedRegression(
      svm_problem trainingData, 
      svm_problem testData, 
      Func<double, double, double[]> zTransform,
      double lambda = 1.0)
        {
            int zLength = zTransform(0, 0).Length;

              int N = trainingData.l;
              var Z = new DenseMatrix(N, zLength);
              var Y = new DenseVector(N);
              for (int j = 0; j < N; j++)
              {
            Y[j] = trainingData.y[j];

            var zj = zTransform(trainingData.x[j][0].value, trainingData.x[j][1].value);
            for (int k = 0; k < zLength; k++)
              Z[j, k] = zj[k];
              }

              var W = Z.TransposeThisAndMultiply(Z).Add(DenseMatrix.Identity(zLength).Multiply(lambda)).Inverse().TransposeAndMultiply(Z).Multiply(Y);

              Func<double, double, double> h = (x1, x2) => W.DotProduct(DenseVector.OfEnumerable(zTransform(x1, x2))) >= 0 ? 1.0 : -1.0;
              Func<svm_problem, double> E = data => (Enumerable.Range(0, data.l).Count(i => Math.Sign(h(data.x[i][0].value, data.x[i][1].value)) !=
            Math.Sign(data.y[i])) + 0.0) / data.l;

              return Tuple.Create(E(trainingData), E(testData));
        }
开发者ID:robinlan,项目名称:R-Study-Lists,代码行数:28,代码来源:Exam.cs

示例4: RunLloydsRbf

        static Tuple<bool, double, double> RunLloydsRbf(svm_problem training, svm_problem test, int K, double gamma)
        {
            Func<double[], double[], double> Distance = (x, y) => (x[0] - y[0]) * (x[0] - y[0]) + (x[1] - y[1]) * (x[1] - y[1]);

              Random rnd = new Random();

              //use LLoyd's to cluster points -----------------------------------------------------------------------------------------------
              //pick K points at random as cluster centers
              var mu = training.x.Select(v => v.Select(u => u.value).ToArray()).OrderBy(v => rnd.NextDouble()).Take(K).ToArray();
              while(true)
              {
            //cluster points
            var clusters = training.x.Select(v => new { x = v, cluster = Enumerable.Range(0, K).OrderBy(cluster =>
              Distance(mu[cluster], v.Select(u => u.value).ToArray())).First() }).OrderBy(v => v.cluster).GroupBy(
              v => v.cluster, v => v.x, (v, u) => u.ToArray()).ToArray();

            //check for empty clusters
            if (clusters.Any(v => v.Length == 0))
              return Tuple.Create(false, 0.0, 0.0);

            //get new mus
            var newMu = clusters.Select(v => new[] { v.Sum(u => u[0].value) / v.Length, v.Sum(u => u[1].value) / v.Length }).ToArray();

            if (mu.Zip(newMu, (v, u) => v[0] == u[0] && v[1] == u[1]).All(v => v))
              break;

            mu = newMu;
              }

              //solve to find W
              var Phi = new DenseMatrix(training.l, K + 1);
              var Y = new DenseVector(training.l);
              for (int i = 0; i < training.l; i++)
              {
            Y[i] = training.y[i];

            Phi[i, 0] = 1;
            for (int j = 0; j < K; j++)
              Phi[i, j+1] = Math.Exp(-gamma * Distance(training.x[i].Select(v => v.value).ToArray(), mu[j]));
              }

              var W = Phi.TransposeThisAndMultiply(Phi).Inverse().TransposeAndMultiply(Phi).Multiply(Y);

              Func<double[], double> h = x => W[0] + W.Skip(1).Zip(mu, (w, m) => w * Math.Exp(-gamma * Distance(x, m))).Sum();

              Func<svm_problem, double> E = data => (Enumerable.Range(0, data.l).Count(i => Math.Sign(h(data.x[i].Select(v => v.value).ToArray())) !=
            Math.Sign(data.y[i])) + 0.0) / data.l;

              return Tuple.Create(true, E(training), E(test));
        }
开发者ID:robinlan,项目名称:R-Study-Lists,代码行数:50,代码来源:Exam.cs

示例5: RunQ2Simulation

        /// <summary>
        /// Non-linear-transformed linear regression simulation for homework Q2 of the 
        ///  6th week of the CS1156x "Learning From Data" at eDX
        /// </summary>
        static void RunQ2Simulation()
        {
            //load training set
              var trainingData = System.IO.File.ReadLines(@"c:/projects/studies/edx/cs1156x/net/hw6/in.dta").Select(
            line => line.Trim().Replace("   ", ",").Replace("  ", ",").Split(',').Select(v => Convert.ToDouble(v)).ToArray()).ToArray();

              //load test set
              var testData = System.IO.File.ReadLines(@"c:/projects/studies/edx/cs1156x/net/hw6/out.dta").Select(
            line => line.Trim().Replace("   ", ",").Replace("  ", ",").Split(',').Select(v => Convert.ToDouble(v)).ToArray()).ToArray();

              int N = trainingData.Length;
              var Z = new DenseMatrix(N, 8);
              var Y = new DenseVector(N);
              for (int j = 0; j < N; j++)
              {
            double x1 = trainingData[j][0], x2 = trainingData[j][1];
            Z[j, 0] = 1;
            Z[j, 1] = x1;
            Z[j, 2] = x2;
            Z[j, 3] = x1 * x1;
            Z[j, 4] = x2 * x2;
            Z[j, 5] = x1 * x2;
            Z[j, 6] = Math.Abs(x1 - x2);
            Z[j, 7] = Math.Abs(x1 + x2);

            Y[j] = trainingData[j][2];
              }

              //Z.QR().Solve(DenseMatrix.Identity(Z.RowCount)).Multiply(Y);
              var W = Z.TransposeThisAndMultiply(Z).Inverse().TransposeAndMultiply(Z).Multiply(Y);

              Func<double, double, double> h = (x1, x2) =>
            W[0] + W[1] * x1 + W[2] * x2 + W[3] * x1 * x1 + W[4] * x2 * x2 + W[5] * x1 * x2
            + W[6] * Math.Abs(x1 - x2) + W[7] * Math.Abs(x1 + x2) >= 0 ? 1.0 : -1.0;

              double eIn = (trainingData.Count(v => Math.Sign(h(v[0], v[1])) != Math.Sign(v[2])) + 0.0) / trainingData.Length;
              double eOut = (testData.Count(v => Math.Sign(h(v[0], v[1])) != Math.Sign(v[2])) + 0.0) / testData.Length;

              Console.Out.WriteLine("HW6 Q2:");
              Console.Out.WriteLine("\teIn = {0}", eIn);
              Console.Out.WriteLine("\teOut = {0}", eOut);
        }
开发者ID:robinlan,项目名称:R-Study-Lists,代码行数:46,代码来源:HW6.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.TransposeThisAndMultiply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。