当前位置: 首页>>代码示例>>C#>>正文


C# DenseMatrix.InsertColumn方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.InsertColumn方法的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix.InsertColumn方法的具体用法?C# DenseMatrix.InsertColumn怎么用?C# DenseMatrix.InsertColumn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Double.DenseMatrix的用法示例。


在下文中一共展示了DenseMatrix.InsertColumn方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Run

        /// <summary>
        /// Run example
        /// </summary>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";
            
            // Create square matrix
            var matrix = new DenseMatrix(5);
            var k = 0;
            for (var i = 0; i < matrix.RowCount; i++)
            {
                for (var j = 0; j < matrix.ColumnCount; j++)
                {
                    matrix[i, j] = k++;
                }
            }

            Console.WriteLine(@"Initial matrix");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector
            var vector = new DenseVector(new[] { 50.0, 51.0, 52.0, 53.0, 54.0 });
            Console.WriteLine(@"Sample vector");
            Console.WriteLine(vector.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 1. Insert new column
            var result = matrix.InsertColumn(3, vector);
            Console.WriteLine(@"1. Insert new column");
            Console.WriteLine(result.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Insert new row
            result = matrix.InsertRow(3, vector);
            Console.WriteLine(@"2. Insert new row");
            Console.WriteLine(result.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Set column values
            matrix.SetColumn(2, (Vector)vector);
            Console.WriteLine(@"3. Set column values");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 4. Set row values. 
            matrix.SetRow(3, (double[])vector);
            Console.WriteLine(@"4. Set row values");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 5. Set diagonal values. SetRow/SetColumn/SetDiagonal accepts Vector and double[] as input parameter
            matrix.SetDiagonal(new[] { 5.0, 4.0, 3.0, 2.0, 1.0 });
            Console.WriteLine(@"5. Set diagonal values");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 6. Set submatrix values
            matrix.SetSubMatrix(1, 3, 1, 3, DenseMatrix.Identity(3));
            Console.WriteLine(@"6. Set submatrix values");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Permutations. 
            // Initialize a new instance of the Permutation class. An array represents where each integer is permuted too: 
            // indices[i] represents that integer "i" is permuted to location indices[i]
            var permutations = new Permutation(new[] { 0, 1, 3, 2, 4 });
            
            // 7. Permute rows 3 and 4
            matrix.PermuteRows(permutations);
            Console.WriteLine(@"7. Permute rows 3 and 4");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 8. Permute columns 1 and 2, 3 and 5
            permutations = new Permutation(new[] { 1, 0, 4, 3, 2 });
            matrix.PermuteColumns(permutations);
            Console.WriteLine(@"8. Permute columns 1 and 2, 3 and 5");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 9. Concatenate the matrix with the given matrix
            var append = matrix.Append(matrix);

            // Concatenate into result matrix
            matrix.Append(matrix, append);
            Console.WriteLine(@"9. Append matrix to matrix");
            Console.WriteLine(append.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

             // 10. Stack the matrix on top of the given matrix matrix
            var stack = matrix.Stack(matrix);

            // Stack into result matrix
            matrix.Stack(matrix, stack);
            Console.WriteLine(@"10. Stack the matrix on top of the given matrix matrix");
            Console.WriteLine(stack.ToString("#0.00\t", formatProvider));
//.........这里部分代码省略.........
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:101,代码来源:MatrixRowColumnOperations.cs

示例2: UseNormalEquation

        private static void UseNormalEquation(DenseMatrix sourceX, DenseVector y)
        {
            Console.WriteLine("Solving with normal equation...");

            var x = sourceX.InsertColumn(0, DenseVector.Create(sourceX.RowCount, i => 1));
            var theta = NormalEquation(x, y);

            Console.WriteLine("Theta computed (using normal equation): {0}", theta);
            var price = new DenseVector(new[] { 1.0, 1650.0, 3.0 }) * theta;

            Console.WriteLine("Predicted price of a 1650 sq-ft, 3 br house (using normal equation): {0}", price);
        }
开发者ID:jgera,项目名称:MachineLearning,代码行数:12,代码来源:Program.cs

示例3: Train


//.........这里部分代码省略.........

                    if (approximationError > delta)
                    {
                        if (maxPhi < threshold)
                        {
                            var tempSigma = new DenseVector(R);
                            sigma.Column(maxIndex, tempSigma);

                            double minSigma = tempSigma.Minimum();
                            int minIndex = tempSigma.MinimumIndex();
                            sigma[minIndex, maxIndex] = k_sigma*minSigma;
                            Psi = CalculatePsi(X, c, sigma);
                            UpdateStructure(X, Psi, d, ref Q, ref O);
                            var psi = new DenseVector(Psi.ColumnCount);
                            Psi.Row(i, psi);

                            pT_n =
                                (DenseMatrix)
                                    CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix())
                                        .Transpose();
                        }
                        else
                        {
                            //add a new neuron and update strucutre

                            double distance = 0;
                            var cTemp = new DenseVector(R);
                            var sigmaTemp = new DenseVector(R);

                            //foreach input variable
                            for (int j = 0; j < R; j++)
                            {
                                distance = Math.Abs(x[j] - c[j, 0]);
                                int distanceIndex = 0;

                                //foreach neuron past 1
                                for (int k = 1; k < U; k++)
                                {
                                    if ((Math.Abs(x[j] - c[j, k])) < distance)
                                    {
                                        distanceIndex = k;
                                        distance = Math.Abs(x[j] - c[j, k]);
                                    }
                                }

                                if (distance < Kd[j])
                                {
                                    cTemp[j] = c[j, distanceIndex];
                                    sigmaTemp[j] = sigma[j, distanceIndex];
                                }
                                else
                                {
                                    cTemp[j] = x[j];
                                    sigmaTemp[j] = distance;
                                }
                            }
                            //end foreach

                            c = (DenseMatrix) c.InsertColumn(c.ColumnCount - 1, cTemp);
                            sigma = (DenseMatrix) sigma.InsertColumn(sigma.ColumnCount - 1, sigmaTemp);
                            Psi = CalculatePsi(X, c, sigma);
                            UpdateStructure(X, Psi, d, ref Q, ref O);
                            U++;
                            KeepSpinning = false;
                        }
                    }
                    else
                    {
                        if (maxPhi < threshold)
                        {
                            var tempSigma = new DenseVector(R);
                            sigma.Column(maxIndex, tempSigma);

                            double minSigma = tempSigma.Minimum();
                            int minIndex = tempSigma.MinimumIndex();
                            sigma[minIndex, maxIndex] = k_sigma*minSigma;
                            Psi = CalculatePsi(X, c, sigma);
                            UpdateStructure(X, Psi, d, ref Q, ref O);
                            var psi = new DenseVector(Psi.ColumnCount);
                            Psi.Row(i, psi);

                            pT_n =
                                (DenseMatrix)
                                    CalculateGreatPsi((DenseMatrix) x.ToColumnMatrix(), (DenseMatrix) psi.ToRowMatrix())
                                        .Transpose();
                        }
                        else
                        {
                            KeepSpinning = false;
                        }
                    }
                }
            }

            out_C = c;
            out_O = O;
            out_Sigma = sigma;

            Console.WriteLine("Done.");
        }
开发者ID:ifzz,项目名称:QuantSys,代码行数:101,代码来源:SOFNN.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.InsertColumn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。