当前位置: 首页>>代码示例>>C#>>正文


C# DenseMatrix.L2Norm方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.L2Norm方法的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix.L2Norm方法的具体用法?C# DenseMatrix.L2Norm怎么用?C# DenseMatrix.L2Norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Double.DenseMatrix的用法示例。


在下文中一共展示了DenseMatrix.L2Norm方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Run

        /// <summary>
        /// Run example
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Matrix_norm">Matrix norm</seealso>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Create square matrix
            var matrix = new DenseMatrix(new[,] { { 1.0, 2.0, 3.0 }, { 6.0, 5.0, 4.0 }, { 8.0, 9.0, 7.0 } });
            Console.WriteLine(@"Initial square matrix");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 1. 1-norm of the matrix
            Console.WriteLine(@"1. 1-norm of the matrix");
            Console.WriteLine(matrix.L1Norm());
            Console.WriteLine();

            // 2. 2-norm of the matrix
            Console.WriteLine(@"2. 2-norm of the matrix");
            Console.WriteLine(matrix.L2Norm());
            Console.WriteLine();

            // 3. Frobenius norm of the matrix
            Console.WriteLine(@"3. Frobenius norm of the matrix");
            Console.WriteLine(matrix.FrobeniusNorm());
            Console.WriteLine();

            // 4. Infinity norm of the matrix
            Console.WriteLine(@"4. Infinity norm of the matrix");
            Console.WriteLine(matrix.InfinityNorm());
            Console.WriteLine();

            // 5. Normalize matrix columns
            Console.WriteLine(@"5. Normalize matrix columns: before normalize");
            foreach (var keyValuePair in matrix.ColumnEnumerator())
            {
                Console.WriteLine(@"Column {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }

            Console.WriteLine();
            var normalized = matrix.NormalizeColumns(2);
            Console.WriteLine(@"5. Normalize matrix columns: after normalize");
            foreach (var keyValuePair in normalized.ColumnEnumerator())
            {
                Console.WriteLine(@"Column {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }

            Console.WriteLine();

            // 6. Normalize matrix columns
            Console.WriteLine(@"6. Normalize matrix rows: before normalize");
            foreach (var keyValuePair in matrix.RowEnumerator())
            {
                Console.WriteLine(@"Row {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }

            Console.WriteLine();
            normalized = matrix.NormalizeRows(2);
            Console.WriteLine(@"6. Normalize matrix rows: after normalize");
            foreach (var keyValuePair in normalized.RowEnumerator())
            {
                Console.WriteLine(@"Row {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }
        }
开发者ID:Mistrall,项目名称:Solvation,代码行数:68,代码来源:MatrixNorms.cs

示例2: Aca

        /// <summary>
        /// Adaptive Cross Approximation (ACA) matrix compression
        /// the result is stored in U and V matrices like U*V
        /// </summary>
        /// <param name="acaThres">Relative error threshold to stop adding rows and columns in ACA iteration</param>
        /// <param name="m">Row indices of Z submatrix to compress</param>
        /// <param name="n">Column indices of Z submatrix to compress</param>
        /// <param name="U">to store result</param>
        /// <param name="V">to store result</param>
        /// <returns>pair with matrix U and V</returns>
        public static Tuple<Matrix, Matrix> Aca(double acaThres, List<int> m, List<int> n, Matrix U, Matrix V)
        {
            int M = m.Count;
            int N = n.Count;
            int Min = Math.Min(M, N);
            U = new DenseMatrix(Min, Min);
            V = new DenseMatrix(Min, Min);
            //if Z is a vector, there is nothing to compress
            if (M == 1 || N == 1)
            {
                U = UserImpedance(m, n);
                V = new DenseMatrix(1, 1);
                V[0, 0] = 1.0;
                return new Tuple<Matrix,Matrix>(U,V);
            }

            //Indices of columns picked up from Z
            //Vector J = new DenseVector(N);
            //List<int> J = new List<int>(N);

            List<int> J = new List<int>(new int [N]);
            //int[] J = new int[N];
            //Indices of rows picked up from Z
            //Vector I = new DenseVector(M);
            List<int> I = new List<int>(new int [M]);
            //int[] I = new int[M];
            //Row indices to search for maximum in R
            //Vector i = new DenseVector(M);
            List<int> i = new List<int>();
            //int[] i = new int[M];
            //Column indices to search for maximum in R
            //Vector j = new DenseVector(N);
            List<int> j = new List<int>();
            //int[] j = new int[N];

            for (int k = 1; k < M; k++)
            {
                i.Add(k);
            }

            for (int k = 0; k < N; k++)
            {
                j.Add(k);
            }

            //Initialization

            //Initialize the 1st row index I(1) = 1
            I[0] = 0;

            //Initialize the 1st row of the approximate error matrix
            List<int> m0 = new List<int>();
            m0.Add(m[I[0]]);
            Matrix Rik = UserImpedance(m0, n);

            //Find the 1st column index J(0)
            double max = -1.0;
            int col = 0;

            foreach (int ind in j)
            {
                if (Math.Abs(Rik[0, ind]) > max)
                {
                    max = Math.Abs(Rik[0, ind]);
                    col = ind;
                }
            }

            //J[0] = j[col];
            J[0] = col;
            j.Remove(J[0]);

            //First row of V
            V = new DenseMatrix(1, Rik.ColumnCount);
            V.SetRow(0, Rik.Row(0).Divide(Rik[0, J[0]]));

            //Initialize the 1st column of the approximate error matrix
            List<int> n0 = new List<int>();
            n0.Add(n[J[0]]);
            Matrix Rjk = UserImpedance(m, n0);

            //First column of U
            U = new DenseMatrix(Rjk.RowCount, 1);
            U.SetColumn(0, Rjk.Column(0));

            // Norm of (approximate) Z, to test error
            double d1 = U.L2Norm();
            double d2 = V.L2Norm();
            double normZ = d1 * d1 * d2 * d2;

//.........这里部分代码省略.........
开发者ID:Yapko,项目名称:ACASparseMatrix,代码行数:101,代码来源:ACA.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.L2Norm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。