当前位置: 首页>>代码示例>>C#>>正文


C# DenseMatrix.LU方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.LU方法的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix.LU方法的具体用法?C# DenseMatrix.LU怎么用?C# DenseMatrix.LU使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Double.DenseMatrix的用法示例。


在下文中一共展示了DenseMatrix.LU方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Run

        /// <summary>
        /// Run example
        /// </summary>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            var matrixA = new DenseMatrix(new[,] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } });
            Console.WriteLine(@"Matrix 'A' with coefficients");
            Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector "b" with the constant terms.
            var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            Console.WriteLine(@"Vector 'b' with the constant terms");
            Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 1. Solve linear equations using LU decomposition
            var resultX = matrixA.LU().Solve(vectorB);
            Console.WriteLine(@"1. Solution using LU decomposition");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Solve linear equations using QR decomposition
            resultX = matrixA.QR().Solve(vectorB);
            Console.WriteLine(@"2. Solution using QR decomposition");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Solve linear equations using SVD decomposition
            matrixA.Svd(true).Solve(vectorB, resultX);
            Console.WriteLine(@"3. Solution using SVD decomposition");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 4. Solve linear equations using Gram-Shmidt decomposition
            matrixA.GramSchmidt().Solve(vectorB, resultX);
            Console.WriteLine(@"4. Solution using Gram-Shmidt decomposition");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 5. Verify result. Multiply coefficient matrix "A" by result vector "x"
            var reconstructVecorB = matrixA * resultX;
            Console.WriteLine(@"5. Multiply coefficient matrix 'A' by result vector 'x'");
            Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // To use Cholesky or Eigenvalue decomposition coefficient matrix must be
            // symmetric (for Evd and Cholesky) and positive definite (for Cholesky)
            // Multipy matrix "A" by its transpose - the result will be symmetric and positive definite matrix
            var newMatrixA = matrixA.TransposeAndMultiply(matrixA);
            Console.WriteLine(@"Symmetric positive definite matrix");
            Console.WriteLine(newMatrixA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 6. Solve linear equations using Cholesky decomposition
            newMatrixA.Cholesky().Solve(vectorB, resultX);
            Console.WriteLine(@"6. Solution using Cholesky decomposition");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 7. Solve linear equations using eigen value decomposition
            newMatrixA.Evd().Solve(vectorB, resultX);
            Console.WriteLine(@"7. Solution using eigen value decomposition");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 8. Verify result. Multiply new coefficient matrix "A" by result vector "x"
            reconstructVecorB = newMatrixA * resultX;
            Console.WriteLine(@"8. Multiply new coefficient matrix 'A' by result vector 'x'");
            Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
开发者ID:JohnnyPP,项目名称:Console-CSV-MigraDoc,代码行数:82,代码来源:DirectSolvers.cs

示例2: LUFailsWithNonSquareMatrix

 public void LUFailsWithNonSquareMatrix()
 {
     var matrix = new DenseMatrix(3, 2);
     Assert.That(() => matrix.LU(), Throws.ArgumentException);
 }
开发者ID:EraYaN,项目名称:EV2020,代码行数:5,代码来源:LUTests.cs

示例3: Run

        /// <summary>
        /// Run example
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/LU_decomposition">LU decomposition</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Invertible_matrix">Invertible matrix</seealso>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Create square matrix
            var matrix = new DenseMatrix(new[,] { { 1.0, 2.0 }, { 3.0, 4.0 } });
            Console.WriteLine(@"Initial square matrix");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Perform LU decomposition
            var lu = matrix.LU();
            Console.WriteLine(@"Perform LU decomposition");

            // 1. Lower triangular factor
            Console.WriteLine(@"1. Lower triangular factor");
            Console.WriteLine(lu.L.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Upper triangular factor
            Console.WriteLine(@"2. Upper triangular factor");
            Console.WriteLine(lu.U.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Permutations applied to LU factorization
            Console.WriteLine(@"3. Permutations applied to LU factorization");
            for (var i = 0; i < lu.P.Dimension; i++)
            {
                if (lu.P[i] > i)
                {
                    Console.WriteLine(@"Row {0} permuted with row {1}", lu.P[i], i);
                }
            }

            Console.WriteLine();

            // 4. Reconstruct initial matrix: PA = L * U
            var reconstruct = lu.L * lu.U;

            // The rows of the reconstructed matrix should be permuted to get the initial matrix
            reconstruct.PermuteRows(lu.P.Inverse());
            Console.WriteLine(@"4. Reconstruct initial matrix: PA = L*U");
            Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 5. Get the determinant of the matrix
            Console.WriteLine(@"5. Determinant of the matrix");
            Console.WriteLine(lu.Determinant);
            Console.WriteLine();

            // 6. Get the inverse of the matrix
            var matrixInverse = lu.Inverse();
            Console.WriteLine(@"6. Inverse of the matrix");
            Console.WriteLine(matrixInverse.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 7. Matrix multiplied by its inverse
            var identity = matrix * matrixInverse;
            Console.WriteLine(@"7. Matrix multiplied by its inverse ");
            Console.WriteLine(identity.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
开发者ID:Mistrall,项目名称:Solvation,代码行数:69,代码来源:LU.cs

示例4: solveActuator2CartesianDisp

        private void solveActuator2CartesianDisp(double[] adisp)
        {
            bool check = false;
            DenseVector cartDisp = new DenseVector(6);
            DenseVector newAct = new DenseVector(adisp);
            DenseVector actError = (DenseVector)newAct.Subtract(actuatorDisp);
            cartesianDisp.CopyTo(cartDisp);
            int iterations = 0;

            while (check == false)
            {
                List2String l2s = new List2String();

                DenseMatrix JacobianMatrix = new DenseMatrix(6, 6);

                for (int i = 0; i < 6; i++)
                {
                    DenseVector DL_Dd = actuators[i].calcNewDiffs(cartDisp.Values);
                    JacobianMatrix.SetRow(i, DL_Dd);
                }
                DenseVector diffCart = (DenseVector)JacobianMatrix.LU().Solve(actError);
                log.Debug("Cartesian differences " + l2s.ToString(diffCart.Values));
                cartDisp = (DenseVector)cartDisp.Add(diffCart);
                setCartesianDisp(cartDisp.Values);
                log.Debug("New cartesian estimate " + this);
                actError = (DenseVector)newAct.Subtract(actuatorDisp);
                log.Debug("Actuator error " + l2s.ToString(actError.Values));

                check = withinErrorWindow(actError);
                if (iterations > 20)
                {
                    check = true;
                    log.Error("Calculations for " + label + " won't converge with " + this);
                }
                iterations++;
            }
        }
开发者ID:mbletzinger,项目名称:lbcb-om,代码行数:37,代码来源:Lbcb.cs

示例5: Solve

        void Solve(double[,] A, double[] b, int nW)
        {
            var matrixA = new DenseMatrix(A);
            var vectorB = new DenseVector(b);
            Vector<double> resultX = matrixA.LU().Solve(vectorB);

            for (int nPos = 0; nPos < resultX.Count; nPos++)
            {
                m_Weights[nPos, nW] = resultX[nPos];
            }
        }
开发者ID:GabeTesta,项目名称:Warps,代码行数:11,代码来源:RBFNetwork.cs

示例6: solve

        //public static int solve(double[,] A, double[] fitz, CenterArrayNode CenterNode, IRBFPolynomial Poly)
        //{
        //     System.Diagnostics.Debug.Assert(fitz.Length == A.GetLength(0));
        //     System.Diagnostics.Debug.Assert(A.GetLength(0) == A.GetLength(1));
        //     int[] pivot = new int[A.GetLength(0)];
        //     int i;//,j,k;
        //     //double[] d = new double[A.Length];
        //     //for (j = 0; j < A.GetLength(0); j++)
        //     //     for (k = 0; k < A.GetLength(1); k++)
        //     //          d[k + j * A.GetLength(0)] = A[j, k];
        //     //DumpD(d, A.GetLength(1), A.GetLength(0), "c:\\before.csv");
        //     double[,] fit = new double[fitz.Length, 1];
        //     for (i = 0; i < fitz.GetLength(0); i++)
        //          fit[i, 0] = fitz[i];
        //     double[,] w2 = BLAS.SimultaneousSolver(A, fit);
        //     //var matrixA = new DenseMatrix(A);
        //     //var vectorB = new DenseVector(fitz);
        //     //Vector<double> resultX = matrixA.LU().Solve(vectorB);
        //     //MCroutPPS.Decomp(Tolerance, ref d, ref pivot, ref error, A.GetLength(1), A.GetLength(0));
        //     //DumpD(d, A.GetLength(1), A.GetLength(0), "c:\\after.csv");
        //     //if (error <= 0)
        //     //{
        //     //	return error;
        //     //}
        //     //double[] w = new double[A.GetLength(0)];// create weights vector
        //     double[] w = new double[A.GetLength(0)];
        //     for (i = 0; i < w2.GetLength(0); i++)
        //          w[i] = w2[i, 0];
        //     //MCroutPPS.Desolv(ref d, ref w, ref fitz, ref pivot, ref error, A.GetLength(0));
        //     //DumpW(w, "c:\\w.csv");
        //     i = 0;
        //     foreach (double weight in w)
        //     {
        //          if (i < CenterNode.Centers.Count)
        //               CenterNode[i].w = weight; // set the center's weight
        //          else
        //               Poly[i - CenterNode.Centers.Count] = weight;
        //          //polycofs[i - Centers.Count] = weight; //store the polynomial coefficients
        //          ++i;
        //     }
        //     return 0;
        //}
        public static int solve(double[,] A, double[] fitz, ICenter[] Centers, IRBFPolynomial Poly)
        {
            var matrixA = new DenseMatrix(A);
            var vectorB = new DenseVector(fitz);
            Vector<double> resultX = matrixA.LU().Solve(vectorB);
            List<double> w2 = new List<double>(resultX.ToArray());

            int i = 0;

            w2.ForEach((double weight) =>
            {
                if (i < Centers.Length)
                    Centers[i].w = weight; // set the center's weight
                else
                    Poly[i - Centers.Length] = weight;//store the polynomial coefficients

                ++i;
            });

               return 0;
        }
开发者ID:GabeTesta,项目名称:Warps,代码行数:63,代码来源:RBF.cs

示例7: FitGeo


//.........这里部分代码省略.........
                {
                    //midpoint normal dotted with tangents
                    p0 = xNor[i].Dot(xTan[i]);// BLAS.dot(xNor[i], xTan[i]);
                    pp = xNor[i].Dot(xTan[i + 1]);//BLAS.dot(xNor[i], xTan[i + 1]);

                    for (gm = g0 = gp = 0, ix = 0; ix < 3; ix++)
                    {
                        //midpoint curvature vector
                        d = xTan[i + 1][ix] - xTan[i][ix];

                        //midpoint tangent and curavture variantion
                        d0 = (xNor[i][ix] - p0 * xTan[i][ix]) / xLen[i];
                        dp = (xNor[i][ix] - pp * xTan[i + 1][ix]) / xLen[i + 1];

                        //bottom, mid and top point gradients
                        gm += d0 * xNor[i - 1][ix];
                        g0 += (-d0 - dp) * xNor[i][ix] + d * dxNor[i][ix];
                        gp += dp * xNor[i + 1][ix];
                    }
                    A[i, i - 1] = gm;
                    A[i, i] = g0;
                    A[i, i + 1] = gp;
                    sNor[i] = -p0 + pp;
                }

                if (end is SlidePoint)//slide endpoint
                {
                    p0 = xNor[i].Dot(xTan[i]);

                    for (gm = g0 = 0, ix = 0; ix < 3; ix++)
                    {
                        //midpoint tangent and curavture variantion
                        d0 = (xNor[i][ix] - p0 * xTan[i][ix]) / xLen[i];

                        //bottom, mid and top point gradients
                        gm += d0 * xNor[i - 1][ix];
                        g0 += -d0 * xNor[i][ix] - xTan[i][ix] * dxNor[i][ix];
                    }
                    A[i, i - 1] = gm;
                    A[i, i] = g0;
                    sNor[i] = -p0;
                }
                else//fixed endpoint
                {
                    A[i, i] = 1;
                    sNor[i] = 0;
                }

                LU decomp = A.LU();
                x = (Vector)decomp.Solve(sNor);

                double Reduce = Math.Min(1, .05 / x.AbsoluteMaximum());

                if( start is SlidePoint)
                        (start as SlidePoint).SCurve -= x[0] * Reduce;

                if( end is SlidePoint)
                        (end as SlidePoint).SCurve -= x[INC] * Reduce;

                for (i = 1; i < NumFits; i++)//increment uv points
                {
                    uFits[i][0] -= x[i] * uNor[i][0] * Reduce;
                    uFits[i][1] -= x[i] * uNor[i][1] * Reduce;
                }

                if (nNwt < 5)
                {
                    //keep initial (s)-increments within bounds
                    if (start is SlidePoint)
                        (start as SlidePoint).SCurve = Utilities.LimitRange(0, (start as SlidePoint).SCurve, 1);

                    if (end is SlidePoint)
                        (end as SlidePoint).SCurve = Utilities.LimitRange(0, (end as SlidePoint).SCurve, 1);

                    //	keep initial (u)-increments within bounds
                    for (i = 1; i < NumFits - 1; i++)
                    {
                        uFits[i][0] = Utilities.LimitRange(0, uFits[i][0], 1);
                        uFits[i][1] = Utilities.LimitRange(-.125, uFits[i][1], 1.125);
                    }
                }
                double xmax = x.AbsoluteMaximum();
                double smax = sNor.AbsoluteMaximum();
                if (Conver = (x.AbsoluteMaximum() < 1e-8 && sNor.AbsoluteMaximum() < 1e-7))
                    break;
            }

            if (!Conver)
                return false;

            g.Length = xLen[0];//store length

            //calculate unit length (s)-parameter values
            sFits[0] = 0;
            for (i = 1; i < NumFits; i++)
                sFits[i] = sFits[i - 1] + xLen[i] / xLen[0];
            //g.m_uvs = uFits;
            g.ReSpline(sFits, uFits);
            return true;
        }
开发者ID:GabeTesta,项目名称:Warps,代码行数:101,代码来源:Geodesic.cs

示例8: Fit

        public void Fit(double[] sPos, double[][] xPnts)
        {
            if (sPos.Length < 5)
            {
                TriFit(sPos, xPnts);
                return;
            }

            int nKnot = sPos.Length -2;
            m_xKnot = new double[sPos.Length+2];
            m_xCof = new double[sPos.Length, Deg];

            int nKnt = 0;
            m_xKnot[nKnt++] = sPos[0];
            m_xKnot[nKnt++] = sPos[0];
            m_xKnot[nKnt++] = sPos[0];
            //	trible up Knot end points but leave extra internal end points
            for (int nOff = 2; nOff <nKnot; nOff++) m_xKnot[nKnt++] = sPos[nOff];
            m_xKnot[nKnt++] = sPos[sPos.Length - 1];
            m_xKnot[nKnt++] = sPos[sPos.Length - 1];
            m_xKnot[nKnt++] = sPos[sPos.Length - 1];

            DenseMatrix A = new DenseMatrix(sPos.Length);
            int nS;
            double[,] basis = null;
            int iRow = 0;//, iCol = 0;

            for (iRow = 0; iRow < sPos.Length; iRow++)
            {
                BsCil(0, sPos[iRow], m_xKnot, out nS, ref basis);
                for (int j = 0; j < 4; j++)
                    A[iRow, nS + j] = basis[0, j];
            }

            LU decomp = A.LU();
            DenseVector b;
            for( int j =0; j < Deg; j++ )
            {
                b = new DenseVector(xPnts[j]);
                Vector x = (Vector)decomp.Solve(b);
                for (int i = 0; i < sPos.Length; i++)
                    m_xCof[i, j] = x[i];
            }
        }
开发者ID:GabeTesta,项目名称:Warps,代码行数:44,代码来源:BSpline.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.LU方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。