本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseMatrix.QR方法的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix.QR方法的具体用法?C# DenseMatrix.QR怎么用?C# DenseMatrix.QR使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MathNet.Numerics.LinearAlgebra.Double.DenseMatrix
的用法示例。
在下文中一共展示了DenseMatrix.QR方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: RunQ5Q6Simulation
/// <summary>
/// Linear regression simulation for homework Q5-Q6 of the
/// 2nd week of the CS1156x "Learning From Data" at eDX
/// </summary>
static void RunQ5Q6Simulation()
{
const int EXPERIMENT_COUNT = 1000, N = 100;
Random rnd = new Random();
double avgEin = 0, avgEout = 0;
for (int i = 1; i <= EXPERIMENT_COUNT; i++)
{
//pick a random line y = a1 * x + b1
double x1 = rnd.NextDouble(), y1 = rnd.NextDouble(), x2 = rnd.NextDouble(), y2 = rnd.NextDouble();
double a = (y1 - y2) / (x1 - x2), b = y1 - a * x1;
Func<double, double, int> f = (x, y) => a * x + b >= y ? 1 : -1;
//generate training set of N random points
var X = new DenseMatrix(N, 3);
var Y = new DenseVector(N);
for (int j = 0; j < N; j++)
{
X[j, 0] = 1;
X[j, 1] = rnd.NextDouble() * 2 - 1;
X[j, 2] = rnd.NextDouble() * 2 - 1;
Y[j] = f(X[j, 1], X[j, 2]);
}
var W = X.QR().Solve(DenseMatrix.Identity(X.RowCount)).Multiply(Y);
Func<double, double, int> h = (x, y) => W[0] + W[1] * x + W[2] * y >= 0 ? 1 : -1;
//find Ein
int count = 0;
for (int j = 0; j < N; j++) if (h(X[j, 1], X[j, 2]) != Y[j]) count++;
avgEin += (count + 0.0) / N;
//find p: f != g
const int P_SAMPLE_COUNT = 1000;
count = 0;
for (int j = 1; j <= P_SAMPLE_COUNT; j++)
{
double xx = rnd.NextDouble() * 2 - 1;
double yy = rnd. NextDouble() * 2 - 1;
if (f(xx, yy) != h(xx, yy)) count++;
}
avgEout += (count + 0.0) / P_SAMPLE_COUNT;
}
Console.Out.WriteLine("HW2 Q5:");
Console.Out.WriteLine("\tEin = {0}", avgEin / EXPERIMENT_COUNT);
Console.Out.WriteLine("HW2 Q6:");
Console.Out.WriteLine("\tEout = {0}", avgEout / EXPERIMENT_COUNT);
}
示例2: Run
/// <summary>
/// Run example
/// </summary>
public void Run()
{
// Format matrix output to console
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
formatProvider.TextInfo.ListSeparator = " ";
// Solve next system of linear equations (Ax=b):
// 5*x + 2*y - 4*z = -7
// 3*x - 7*y + 6*z = 38
// 4*x + 1*y + 5*z = 43
// Create matrix "A" with coefficients
var matrixA = new DenseMatrix(new[,] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } });
Console.WriteLine(@"Matrix 'A' with coefficients");
Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Create vector "b" with the constant terms.
var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
Console.WriteLine(@"Vector 'b' with the constant terms");
Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 1. Solve linear equations using LU decomposition
var resultX = matrixA.LU().Solve(vectorB);
Console.WriteLine(@"1. Solution using LU decomposition");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 2. Solve linear equations using QR decomposition
resultX = matrixA.QR().Solve(vectorB);
Console.WriteLine(@"2. Solution using QR decomposition");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 3. Solve linear equations using SVD decomposition
matrixA.Svd(true).Solve(vectorB, resultX);
Console.WriteLine(@"3. Solution using SVD decomposition");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 4. Solve linear equations using Gram-Shmidt decomposition
matrixA.GramSchmidt().Solve(vectorB, resultX);
Console.WriteLine(@"4. Solution using Gram-Shmidt decomposition");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 5. Verify result. Multiply coefficient matrix "A" by result vector "x"
var reconstructVecorB = matrixA * resultX;
Console.WriteLine(@"5. Multiply coefficient matrix 'A' by result vector 'x'");
Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// To use Cholesky or Eigenvalue decomposition coefficient matrix must be
// symmetric (for Evd and Cholesky) and positive definite (for Cholesky)
// Multipy matrix "A" by its transpose - the result will be symmetric and positive definite matrix
var newMatrixA = matrixA.TransposeAndMultiply(matrixA);
Console.WriteLine(@"Symmetric positive definite matrix");
Console.WriteLine(newMatrixA.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 6. Solve linear equations using Cholesky decomposition
newMatrixA.Cholesky().Solve(vectorB, resultX);
Console.WriteLine(@"6. Solution using Cholesky decomposition");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 7. Solve linear equations using eigen value decomposition
newMatrixA.Evd().Solve(vectorB, resultX);
Console.WriteLine(@"7. Solution using eigen value decomposition");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 8. Verify result. Multiply new coefficient matrix "A" by result vector "x"
reconstructVecorB = newMatrixA * resultX;
Console.WriteLine(@"8. Multiply new coefficient matrix 'A' by result vector 'x'");
Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
Console.WriteLine();
}
示例3: RunQ8Simulation
/// <summary>
/// Linear regressionsimulation with non-separable target function
/// for homework Q8 of the 2nd week of the CS1156x "Learning From Data" at eDX
/// </summary>
static void RunQ8Simulation()
{
const int EXPERIMENT_COUNT = 1000, N = 100;
Random rnd = new Random();
double avgEin = 0;
for (int i = 1; i <= EXPERIMENT_COUNT; i++)
{
Func<double, double, int> f = (x1, x2) => x1 * x1 + x2 * x2 - 0.6 >= 0 ? 1 : -1;
//generate training set of N random points
var X = new DenseMatrix(N, 3);
var Y = new DenseVector(N);
for (int j = 0; j < N; j++)
{
X[j, 0] = 1;
X[j, 1] = rnd.NextDouble() * 2 - 1;
X[j, 2] = rnd.NextDouble() * 2 - 1;
Y[j] = f(X[j, 1], X[j, 2]);
//not exactly how it was defined in the problem statement, but shall be good enough
if (rnd.NextDouble() < 0.1) Y[j] = -Y[j];
}
var W = X.QR().Solve(DenseMatrix.Identity(X.RowCount)).Multiply(Y);
Func<double, double, int> h = (x, y) => W[0] + W[1] * x + W[2] * y >= 0 ? 1 : -1;
//find Ein
int count = 0;
for (int j = 0; j < N; j++) if (h(X[j, 1], X[j, 2]) != Y[j]) count++;
avgEin += (count + 0.0) / N;
}
Console.Out.WriteLine("HW2 Q8:");
Console.Out.WriteLine("\tEin = {0}", avgEin / EXPERIMENT_COUNT);
}
示例4: RunQ9Q10Simulation
/// <summary>
/// Non-linear-transformed linear regression simulation for homework Q9, Q10 of the
/// 2nd week of the CS1156x "Learning From Data" at eDX
/// </summary>
static void RunQ9Q10Simulation()
{
const int EXPERIMENT_COUNT = 1000, N = 100;
Random rnd = new Random();
double avgEout = 0;
for (int i = 1; i <= EXPERIMENT_COUNT; i++)
{
Func<double, double, int> f = (x1, x2) => x1 * x1 + x2 * x2 - 0.6 >= 0 ? 1 : -1;
//generate training set of N random points
var X = new DenseMatrix(N, 3);
var Y = new DenseVector(N);
for (int j = 0; j < N; j++)
{
X[j, 0] = 1;
X[j, 1] = rnd.NextDouble() * 2 - 1;
X[j, 2] = rnd.NextDouble() * 2 - 1;
Y[j] = f(X[j, 1], X[j, 2]);
// Just flipping each Y with a 10% chance -
// not exactly how it was defined in the problem statement, but shall be good enough
if (rnd.NextDouble() < 0.1) Y[j] = -Y[j];
}
var XX = new DenseMatrix(N, 6);
for (int j = 0; j < N; j++)
{
XX[j, 0] = 1;
XX[j, 1] = X[j, 1];
XX[j, 2] = X[j, 2];
XX[j, 3] = X[j, 1] * X[j, 2];
XX[j, 4] = X[j, 1] * X[j, 1];
XX[j, 5] = X[j, 2] * X[j, 2];
}
var W = XX.QR().Solve(DenseMatrix.Identity(XX.RowCount)).Multiply(Y);
Func<double, double, int> h = (x, y) => W[0] + W[1] * x + W[2] * y + W[3] * x * y + W[4] * x * x + W[5] * y * y >= 0 ? 1 : -1;
//find p: f != g
const int P_SAMPLE_COUNT = 1000;
int count = 0;
for (int j = 1; j <= P_SAMPLE_COUNT; j++)
{
double xx = rnd.NextDouble() * 2 - 1;
double yy = rnd.NextDouble() * 2 - 1;
int ff = f(xx, yy);
if (rnd.NextDouble() < 0.1) ff = -ff;
if (ff != h(xx, yy)) count++;
}
avgEout += (count + 0.0) / P_SAMPLE_COUNT;
}
Console.Out.WriteLine("HW2 Q10:");
Console.Out.WriteLine("\tEout = {0}", avgEout / EXPERIMENT_COUNT);
}
示例5: Run
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/QR_decomposition">QR decomposition</seealso>
public void Run()
{
// Format matrix output to console
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
formatProvider.TextInfo.ListSeparator = " ";
// Create 3 x 2 matrix
var matrix = new DenseMatrix(new[,] { { 1.0, 2.0 }, { 3.0, 4.0 }, { 5.0, 6.0 } });
Console.WriteLine(@"Initial 3x2 matrix");
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Perform QR decomposition (Householder transformations)
var qr = matrix.QR();
Console.WriteLine(@"QR decomposition (Householder transformations)");
// 1. Orthogonal Q matrix
Console.WriteLine(@"1. Orthogonal Q matrix");
Console.WriteLine(qr.Q.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 2. Multiply Q matrix by its transpose gives identity matrix
Console.WriteLine(@"2. Multiply Q matrix by its transpose gives identity matrix");
Console.WriteLine(qr.Q.TransposeAndMultiply(qr.Q).ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 3. Upper triangular factor R
Console.WriteLine(@"3. Upper triangular factor R");
Console.WriteLine(qr.R.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 4. Reconstruct initial matrix: A = Q * R
var reconstruct = qr.Q * qr.R;
Console.WriteLine(@"4. Reconstruct initial matrix: A = Q*R");
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Perform QR decomposition (Gram–Schmidt process)
var gramSchmidt = matrix.GramSchmidt();
Console.WriteLine(@"QR decomposition (Gram–Schmidt process)");
// 5. Orthogonal Q matrix
Console.WriteLine(@"5. Orthogonal Q matrix");
Console.WriteLine(gramSchmidt.Q.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 6. Multiply Q matrix by its transpose gives identity matrix
Console.WriteLine(@"6. Multiply Q matrix by its transpose gives identity matrix");
Console.WriteLine((gramSchmidt.Q.Transpose() * gramSchmidt.Q).ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 7. Upper triangular factor R
Console.WriteLine(@"7. Upper triangular factor R");
Console.WriteLine(gramSchmidt.R.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 8. Reconstruct initial matrix: A = Q * R
reconstruct = gramSchmidt.Q * gramSchmidt.R;
Console.WriteLine(@"8. Reconstruct initial matrix: A = Q*R");
Console.WriteLine(reconstruct.ToString("#0.00\t", formatProvider));
Console.WriteLine();
}
示例6: RunQ7Simulation
/// <summary>
/// Linear regression/Perceptron simulation for homework Q7 of the
/// 2nd week of the CS1156x "Learning From Data" at eDX
/// </summary>
static void RunQ7Simulation()
{
const int EXPERIMENT_COUNT = 1000, N = 10;
Random rnd = new Random();
double avgK = 0;
for (int i = 1; i <= EXPERIMENT_COUNT; i++)
{
//pick a random line y = a1 * x + b1
double x1 = rnd.NextDouble(), y1 = rnd.NextDouble(), x2 = rnd.NextDouble(), y2 = rnd.NextDouble();
double a = (y1 - y2) / (x1 - x2), b = y1 - a * x1;
Func<double, double, int> f = (x, y) => a * x + b >= y ? 1 : -1;
//generate training set of N random points
var X = new DenseMatrix(N, 3);
var Y = new DenseVector(N);
for (int j = 0; j < N; j++)
{
X[j, 0] = 1;
X[j, 1] = rnd.NextDouble() * 2 - 1;
X[j, 2] = rnd.NextDouble() * 2 - 1;
Y[j] = f(X[j, 1], X[j, 2]);
}
var W = X.QR().Solve(DenseMatrix.Identity(X.RowCount)).Multiply(Y);
double w0 = W[0], w1 = W[1], w2 = W[2];
Func<double, double, int> h = (x, y) => w0 + w1 * x + w2 * y >= 0 ? 1 : -1;
//run Perceptron
int k = 1;
while (Enumerable.Range(0, N).Any(j => f(X[j, 1], X[j, 2]) != h(X[j, 1], X[j, 2])))
{
//find all misclasified points
int[] M = Enumerable.Range(0, N).Where(j => f(X[j, 1], X[j, 2]) != h(X[j, 1], X[j, 2])).ToArray();
int m = M[rnd.Next(0, M.Length)];
int sign = f(X[m, 1], X[m, 2]);
w0 += sign;
w1 += sign * X[m, 1];
w2 += sign * X[m, 2];
k++;
}
avgK += k;
}
Console.Out.WriteLine("HW2 Q7:");
Console.Out.WriteLine("\tK = {0}", avgK / EXPERIMENT_COUNT);
}
示例7: Run
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/Transpose">Transpose</seealso>
/// <seealso cref="http://en.wikipedia.org/wiki/Invertible_matrix">Invertible matrix</seealso>
public void Run()
{
// Format matrix output to console
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
formatProvider.TextInfo.ListSeparator = " ";
// Create random square matrix
var matrix = new DenseMatrix(5);
var rnd = new Random(1);
for (var i = 0; i < matrix.RowCount; i++)
{
for (var j = 0; j < matrix.ColumnCount; j++)
{
matrix[i, j] = rnd.NextDouble();
}
}
Console.WriteLine(@"Initial matrix");
Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 1. Get matrix inverse
var inverse = matrix.Inverse();
Console.WriteLine(@"1. Matrix inverse");
Console.WriteLine(inverse.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 2. Matrix multiplied by its inverse gives identity matrix
var identity = matrix * inverse;
Console.WriteLine(@"2. Matrix multiplied by its inverse");
Console.WriteLine(identity.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 3. Get matrix transpose
var transpose = matrix.Transpose();
Console.WriteLine(@"3. Matrix transpose");
Console.WriteLine(transpose.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 4. Get orthogonal matrix, i.e. do QR decomposition and get matrix Q
var orthogonal = matrix.QR().Q;
Console.WriteLine(@"4. Orthogonal matrix");
Console.WriteLine(orthogonal.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 5. Transpose and multiply orthogonal matrix by iteslf gives identity matrix
identity = orthogonal.TransposeAndMultiply(orthogonal);
Console.WriteLine(@"Transpose and multiply orthogonal matrix by iteslf");
Console.WriteLine(identity.ToString("#0.00\t", formatProvider));
Console.WriteLine();
}
示例8: solve
public static int solve(double[,] A, double[] fitz, CenterArrayNode CenterNode, IRBFPolynomial Poly, bool MathNet)
{
var matrixA = new DenseMatrix(A);
var vectorB = new DenseVector(fitz);
//Vector<double> resultX = matrixA.LU().Solve(vectorB);
Vector<double> resultX = matrixA.QR().Solve(vectorB);
//matrixA.GramSchmidt().Solve(vectorB, resultX);
List<double> w2 = new List<double>(resultX.ToArray());
int i = 0;
w2.ForEach((double weight) =>
{
if (i < CenterNode.Centers.Count)
CenterNode[i].w = weight; // set the center's weight
else
Poly[i - CenterNode.Centers.Count] = weight;//store the polynomial coefficients
++i;
});
return 0;
}
示例9: Iteration
/// <summary>
/// Train. Single iteration.
/// </summary>
public void Iteration()
{
int rowCount = _trainingData.Count;
int inputColCount = _trainingData[0].Input.Length;
Matrix<double> xMatrix = new DenseMatrix(rowCount, inputColCount + 1);
Matrix<double> yMatrix = new DenseMatrix(rowCount, 1);
for (int row = 0; row < _trainingData.Count; row++)
{
BasicData dataRow = _trainingData[row];
int colSize = dataRow.Input.Count();
xMatrix[row, 0] = 1;
for (int col = 0; col < colSize; col++)
{
xMatrix[row, col + 1] = dataRow.Input[col];
}
yMatrix[row, 0] = dataRow.Ideal[0];
}
// Calculate the least squares solution
QR qr = xMatrix.QR();
Matrix<double> beta = qr.Solve(yMatrix);
double sum = 0.0;
for (int i = 0; i < inputColCount; i++)
sum += yMatrix[i, 0];
double mean = sum/inputColCount;
for (int i = 0; i < inputColCount; i++)
{
double dev = yMatrix[i, 0] - mean;
_sst += dev*dev;
}
Matrix<double> residuals = xMatrix.Multiply(beta).Subtract(yMatrix);
_sse = residuals.L2Norm()*residuals.L2Norm();
for (int i = 0; i < _algorithm.LongTermMemory.Length; i++)
{
_algorithm.LongTermMemory[i] = beta[i, 0];
}
// calculate error
_errorCalculation.Clear();
foreach (BasicData dataRow in _trainingData)
{
double[] output = _algorithm.ComputeRegression(dataRow.Input);
_errorCalculation.UpdateError(output, dataRow.Ideal, 1.0);
}
_error = _errorCalculation.Calculate();
}
示例10: Polyfit
private double[] Polyfit(double[] x, double[] y, int degree)
{
// Vandermonde matrix
var v = new DenseMatrix(x.Length, degree + 1);
for (int i = 0; i < v.RowCount; i++)
for (int j = 0; j <= degree; j++) v[i, j] = Math.Pow(x[i], j);
var yv = new DenseVector(y).ToColumnMatrix();
QR<double> qr = v.QR();
// Math.Net doesn't have an "economy" QR, so:
// cut R short to square upper triangle, then recompute Q
var r = qr.R.SubMatrix(0, degree + 1, 0, degree + 1);
var q = v.Multiply(r.Inverse());
var p = r.Inverse().Multiply(q.TransposeThisAndMultiply(yv));
return p.Column(0).ToArray();
}
示例11: CurveFit
public CurveFit(List<CurvePoint> data)
{
var x = new DenseMatrix(data.Count, data.Count);
for(int i = 0; i < data.Count; i++)
{
for (int j = 0; j < data.Count; j++)
{
x[i, j] = Pow(data[i].x, data.Count - 1 - j);
}
}
var y = new DenseVector(data.Select(p => (double)p.y).ToArray());
var coefficents = x.QR().Solve(y);
Coefficents = coefficents.Select(c => Round(c)).ToList();
}