本文整理汇总了C#中Circle.Intersect方法的典型用法代码示例。如果您正苦于以下问题:C# Circle.Intersect方法的具体用法?C# Circle.Intersect怎么用?C# Circle.Intersect使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Circle
的用法示例。
在下文中一共展示了Circle.Intersect方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: BuildBackwardPass
private ITrackingCommand BuildBackwardPass()
{
BehaviorManager.TraceSource.TraceEvent(TraceEventType.Information, 0, "UTurn Behavior: Initialize Backward Pass");
// rotate the polygon into the current relative frame
CarTimestamp curTimestamp = Services.RelativePose.CurrentTimestamp;
RelativeTransform relTransform = Services.RelativePose.GetTransform(polygonTimestamp, curTimestamp);
relTransform.TransformPointsInPlace(polygon);
finalOrientation = finalOrientation.Transform(relTransform);
polygonTimestamp = curTimestamp;
// retrieve the vehicle state
Coordinates headingVec = new Coordinates(1, 0);
Coordinates headingVec180 = headingVec.Rotate180();
Coordinates headingVec90 = headingVec.Rotate90();
// figure out center point of turn
Circle rearAxleCircle = Circle.FromPointSlopeRadius(new Coordinates(0,0), headingVec180, minRadius);
Coordinates center = rearAxleCircle.center;
// calculate the points of the wheels
Coordinates rearLeftPoint = headingVec90*TahoeParams.T/2;
Coordinates rearRightPoint = -headingVec90*TahoeParams.T/2;
Coordinates frontLeftPoint = headingVec*TahoeParams.L + headingVec90*TahoeParams.T/2;
Coordinates frontRightPoint = headingVec*TahoeParams.L - headingVec90*TahoeParams.T/2;
double minHit = Math.PI/2.1;
GetMinHitAngle(rearLeftPoint, center, ref minHit);
GetMinHitAngle(rearRightPoint, center, ref minHit);
//GetMinHitAngle(frontLeftPoint, center, false, ref minHit);
//GetMinHitAngle(frontRightPoint, center, false, ref minHit);
frontLeftPoint = headingVec*TahoeParams.FL + headingVec90*TahoeParams.T/2;
frontRightPoint = headingVec*TahoeParams.FL - headingVec90*TahoeParams.T/2.0;
rearRightPoint = -headingVec*TahoeParams.RL - headingVec90*TahoeParams.T/2.0;
rearLeftPoint = -headingVec*TahoeParams.RL + headingVec90*TahoeParams.T/2.0;
List<Polygon> obstacles = GetObstacles(curTimestamp);
GetObstacleHitAngle(frontLeftPoint, center, obstacles, ref minHit);
GetObstacleHitAngle(rearLeftPoint, center, obstacles, ref minHit);
GetObstacleHitAngle(rearRightPoint, center, obstacles, ref minHit);
// trim some off the hit for safety'
minHit -= (0.3/minRadius);
// move at least 0.6 meters
minHit = Math.Max(minHit, 0.6 / minRadius);
// calculate the exit stopping point
// shift the line by the minimum turning radius
Coordinates u = finalOrientation.P1 - finalOrientation.P0;
u = u.Normalize().Rotate90();
Line offsetLine = new Line();
offsetLine.P0 = finalOrientation.P0 + u*(minRadius+2);
offsetLine.P1 = finalOrientation.P1 + u*(minRadius+2);
// final the intersection of the current turn circle with a radius of twice the min turn radius and the offset line
Circle twoTurn = new Circle(2*minRadius + 2, center);
Coordinates[] intersections;
double startAngle = (-center).ArcTan;
if (twoTurn.Intersect(offsetLine, out intersections)) {
// figure out where there were hits
for (int i = 0; i < intersections.Length; i++) {
// get the angle of the hit
double angle = (intersections[i] - center).ArcTan;
if (angle < startAngle)
angle += 2*Math.PI;
angle -= startAngle;
if (angle < minHit)
minHit = angle;
}
}
minHit = Math.Max(minHit, 0.6 / minRadius);
// set the stopping point at the min hit point
Coordinates stopPoint = rearAxleCircle.GetPoint(startAngle+minHit);
// calculate the stop distance
stopDistance = rearAxleCircle.r*minHit;
stopTimestamp = curTimestamp;
curvature = 1/minRadius;
// calculate the required steering angle
double steeringCommand = SteeringUtilities.CurvatureToSteeringWheelAngle(-1/minRadius, uturnSpeed);
ISpeedCommandGenerator shiftSpeedCommand = new ShiftSpeedCommand(TransmissionGear.Reverse);
ISteeringCommandGenerator initialSteeringCommand = new ConstantSteeringCommandGenerator(steeringCommand, steeringRate, true);
ISpeedCommandGenerator passSpeedCommand = new FeedbackSpeedCommandGenerator(new StopSpeedGenerator(new TravelledDistanceProvider(curTimestamp, stopDistance), uturnSpeed));
ISteeringCommandGenerator passSteeringCommand = new ConstantSteeringCommandGenerator(steeringCommand, null, false);
ChainedTrackingCommand cmd = new ChainedTrackingCommand(
new TrackingCommand(shiftSpeedCommand, initialSteeringCommand, true),
new TrackingCommand(passSpeedCommand, passSteeringCommand, false));
cmd.Label = backwardLabel;
Services.UIService.PushCircle(new Circle(minRadius, center), curTimestamp, "uturn circle", true);
Services.UIService.PushPoint(stopPoint, curTimestamp, "uturn stop point", true);
//.........这里部分代码省略.........
示例2: Intersect
public bool Intersect(Circle c, out Vector2[] pts)
{
return c.Intersect(this, out pts);
}
示例3: Intersect
public bool Intersect(Circle c, out Coordinates[] pts)
{
return c.Intersect(this, out pts);
}
示例4: ExtendNode
/// <summary>
///
/// </summary>
/// <param name="goalPoint"></param>
/// <param name="obstacles"></param>
/// <param name="goal"></param>
/// <param name="foundPath"></param>
/// <param name="samplePoint"></param>
/// <param name="closestNode"></param>
/// <returns>true if the node was added to the tree (i.e. didnt hit crap)</returns>
private RRTNode ExtendNode(ref Vector2 goalPoint, List<Polygon> obstacles, ref RRTNode goal, ref bool foundPath, ref Vector2 samplePoint, RRTNode closestNode, Random rand)
{
//3) generate a control input that drives towards the sample point also biased with our initial control inputs
//3a) -Biasing Details:
// Select Velocity: Normal Distribution with mean = closest node velocity and sigma = SigmaVelocity
// Select Turn Rate:
// Apply the following heuristic: mean = (atan2(yf-yi,xf-xi) - thetaInit)/(delT)
// sigma = SigmaTurnRate
// velocity distribution
MathNet.Numerics.Distributions.NormalDistribution vDist = new MathNet.Numerics.Distributions.NormalDistribution(closestNode.State.Command.velocity, vSigma);
// turn-rate biased
double mixingSample = rand.NextDouble();
double wMean = 0;
if (mixingSample > mixingProportion)
{
double angleToClosestNode = Math.Atan2((samplePoint.Y - closestNode.Point.Y), (samplePoint.X - closestNode.Point.X));
//wMean = -kPwSample * angleToClosestNode;
wMean = ((angleToClosestNode - closestNode.State.Pose.yaw)) * 180.0 / Math.PI / timeStep;
if (wMean > MAX_TURN - 20)
wMean = MAX_TURN - 20;
if (wMean < MIN_TURN + 20)
wMean = MIN_TURN + 20;
}
else
wMean = 0;
MathNet.Numerics.Distributions.NormalDistribution wDist = new MathNet.Numerics.Distributions.NormalDistribution(wMean, wSigma);
double velSampled = vDist.NextDouble();
double wSampled = wDist.NextDouble();
while (velSampled > MAX_VEL || velSampled < MIN_VEL)
velSampled = vDist.NextDouble();
while (wSampled > MAX_TURN || wSampled < MIN_TURN)
wSampled = wDist.NextDouble();
// 4) Predict a node
RRTNode predictedNode = CalculateNextNode(closestNode, velSampled, wSampled, obstacles);
if (predictedNode != null)
{
closestNode.AddChild(predictedNode);
//5) Check if the new node added is within some tolerance of the goal node. If so, mark node as goal and you're done! Else, Goto 1.
//Polygon goalPolygon = Polygon.VehiclePolygonWithRadius(0.5, goalPoint);
Circle c = new Circle(.5, goalPoint);
LineSegment nodeToParent = new LineSegment(predictedNode.Point, predictedNode.Parent.Point);
Vector2[] pts = new Vector2[2];
if (c.Intersect(nodeToParent, out pts))
{
foundPath = true;
goal = predictedNode;
}
//if (predictedNode.DistanceTo(goalPoint) < goalTolerance)
//{
// foundPath = true;
// goal = predictedNode;
//}
return predictedNode;
}
return null;
}