当前位置: 首页>>代码示例>>C++>>正文


C++ VectorXf::minCoeff方法代码示例

本文整理汇总了C++中eigen::VectorXf::minCoeff方法的典型用法代码示例。如果您正苦于以下问题:C++ VectorXf::minCoeff方法的具体用法?C++ VectorXf::minCoeff怎么用?C++ VectorXf::minCoeff使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::VectorXf的用法示例。


在下文中一共展示了VectorXf::minCoeff方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: MatrixXf

Eigen::MatrixXf
powerspectrum::from_pcm(const Eigen::VectorXf& pcm_samples)
{
    MINILOG(logTRACE) << "Powerspectrum computation. input samples="
            << pcm_samples.size();
    // check if inputs are sane
    if ((pcm_samples.size() < win_size) || (hop_size > win_size)) {
        return Eigen::MatrixXf(0, 0);
    }
    size_t frames = (pcm_samples.size() - (win_size-hop_size)) / hop_size;
    size_t freq_bins = win_size/2 + 1;

    // initialize power spectrum
    Eigen::MatrixXf ps(freq_bins, frames);

    // peak normalization value
    float pcm_scale = std::max(fabs(pcm_samples.minCoeff()),
            fabs(pcm_samples.maxCoeff()));

    // scale signal to 96db (16bit)
    pcm_scale =  std::pow(10.0f, 96.0f/20.0f) / pcm_scale;

    // compute the power spectrum
    for (size_t i = 0; i < frames; i++) {

        // fill pcm
        for (int j = 0; j < win_size; j++) {
            kiss_pcm[j] = pcm_samples(i*hop_size+j) * pcm_scale * win_funct(j);
        }

        // fft
        kiss_fftr(kiss_status, kiss_pcm, kiss_freq);

        // save powerspectrum frame
        Eigen::MatrixXf::ColXpr psc(ps.col(i));
        for (int j = 0; j < win_size/2+1; j++) {
            psc(j) =
                    std::pow(kiss_freq[j].r, 2) + std::pow(kiss_freq[j].i, 2);
        }
    }

    MINILOG(logTRACE) << "Powerspectrum finished. size=" << ps.rows() << "x"
            << ps.cols();
    return ps;
}
开发者ID:agangzz,项目名称:musly,代码行数:45,代码来源:powerspectrum.cpp

示例2: main


//.........这里部分代码省略.........
	}

	ROS_INFO("Action server started, sending goal.");

	// send a goal to the action
	for (int i = 0; i < workers; i++) {
		ac_list[i]->sendGoal(goals[i]);
	}

	//wait for the action to return
	std::vector<bool> finished;
	for (int i = 0; i < workers; i++) {
		bool finished_before_timeout = ac_list[i]->waitForResult(
				ros::Duration(30.0));
		finished.push_back(finished_before_timeout);
	}

	bool success = true;
	for (int i = 0; i < workers; i++) {
		success = finished[i] && success;
	}

	Eigen::MatrixXf acc_JtJ;
	acc_JtJ.setZero(size * 6, size * 6);
	Eigen::VectorXf acc_Jte;
	acc_Jte.setZero(size * 6);

	if (success) {

		for (int i = 0; i < workers; i++) {
			Eigen::MatrixXf JtJ;
			JtJ.setZero(size * 6, size * 6);
			Eigen::VectorXf Jte;
			Jte.setZero(size * 6);

			rm_multi_mapper::Vector rosJte = ac_list[i]->getResult()->Jte;
			rm_multi_mapper::Matrix rosJtJ = ac_list[i]->getResult()->JtJ;

			vector2eigen(rosJte, Jte);

			matrix2eigen(rosJtJ, JtJ);

			acc_JtJ += JtJ;
			acc_Jte += Jte;

		}

	} else {
		ROS_INFO("Action did not finish before the time out.");
		std::exit(0);
	}

	Eigen::VectorXf update = -acc_JtJ.ldlt().solve(acc_Jte);

	float iteration_max_update = std::max(std::abs(update.maxCoeff()),
			std::abs(update.minCoeff()));

	ROS_INFO("Max update %f", iteration_max_update);

	/*for (int i = 0; i < (int)frames.size(); i++) {

	 frames[i]->get_pos() = Sophus::SE3f::exp(update.segment<6>(i))
	 * frames[i]->get_pos();

	 std::string query = "UPDATE `positions` SET `q0` = " + 
	 boost::lexical_cast<std::string>(frames[i]->get_pos().so3().data()[0]) +
	 ", `q1` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_pos().so3().data()[1]) +
	 ", `q2` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_pos().so3().data()[2]) +
	 ", `q3` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_pos().so3().data()[3]) +
	 ", `t0` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_pos().translation()[0]) +
	 ", `t1` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_pos().translation()[1]) +
	 ", `t2` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_pos().translation()[2]) +
	 ", `int0` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_intrinsics().array()[0]) +
	 ", `int1` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_intrinsics().array()[1]) +
	 ", `int2` = " +
	 boost::lexical_cast<std::string>(frames[i]->get_intrinsics().array()[2]) +
	 " WHERE `id` = " +
	 boost::lexical_cast<std::string>(i) +
	 ";";

	 res = U.sql_query(query);
	 delete res;
	 

	 }*/
	timestamp_t t1 = get_timestamp();

	double secs = (t1 - t0) / 1000000.0L;
	std::cout << secs << std::endl;
	return 0;

}
开发者ID:Aerobota,项目名称:rapyuta-mapping,代码行数:101,代码来源:slam.cpp


注:本文中的eigen::VectorXf::minCoeff方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。