当前位置: 首页>>代码示例>>C++>>正文


C++ VectorXf::cwiseAbs方法代码示例

本文整理汇总了C++中eigen::VectorXf::cwiseAbs方法的典型用法代码示例。如果您正苦于以下问题:C++ VectorXf::cwiseAbs方法的具体用法?C++ VectorXf::cwiseAbs怎么用?C++ VectorXf::cwiseAbs使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::VectorXf的用法示例。


在下文中一共展示了VectorXf::cwiseAbs方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: data

std::vector<std::vector<cv::Point2f> > OutlierDetector::fitSubspace(const std::vector<std::vector<cv::Point2f> > &trajectories, std::vector<cv::Point2f> &outlier_points, int num_motions, double sigma)
{
    bool print = false;
    int subspace_dimensions = trajectories[0].size() * 2; // n
    int num_trajectories = trajectories.size();
    // each column in data represents one trajectory
    // even rows are x coordinates, odd rows are y coordinates
    Eigen::MatrixXf data(subspace_dimensions, num_trajectories);
    if (print) std::cout << "fill matrix " << std::endl;
    fillMatrix(trajectories, data);
    if (print) std::cout << "mean subtract " << std::endl;
    meanSubtract(data);

    int num_sample_points = 4 * num_motions; // d
    int num_iterations = 50;
    
    Eigen::VectorXf final_residual;
    std::vector<int> final_columns;
    int max_points = 0;

    if (print) std::cout << " start iterations " << std::endl;
    for (int i = 0; i < num_iterations; i++)
    {
        Eigen::MatrixXf subset(subspace_dimensions, num_sample_points); 
        if (print) std::cout << "file subset " << std::endl;
        std::vector<int> column_indices;
        column_indices = fillSubset(data, subset, num_sample_points);

        if (print) std::cout << "svd calculation " << std::endl;
//        Eigen::JacobiSVD<Eigen::MatrixXf> svd(subset, Eigen::ComputeFullU | Eigen::ComputeFullV);
        Eigen::JacobiSVD<Eigen::MatrixXf, Eigen::FullPivHouseholderQRPreconditioner> svd(subset,  Eigen::ComputeFullU | Eigen::ComputeFullV);

        if (print) std::cout << "init Pnd " << std::endl;
        Eigen::MatrixXf Pnd = Eigen::MatrixXf::Zero(subspace_dimensions, subspace_dimensions);
        //std::cout << "U" << std::endl;
        //std::cout << svd.matrixU() << std::endl;
        //std::cout << svd.singularValues() << std::endl;
        
        if (print) std::cout << "calc M " << std::endl;
        for (int idx = 0; idx < num_sample_points; idx++)
        {
            Eigen::VectorXf u = svd.matrixU().col(idx);
            Eigen::MatrixXf M = u*u.transpose();
            Pnd = Pnd + M;
        }
        if (print) std::cout << "calc Pnd " << std::endl;
        Pnd = Eigen::MatrixXf::Identity(subspace_dimensions, subspace_dimensions) - Pnd;

        Eigen::MatrixXf data_T = data.transpose();
        if (print) std::cout << "calc residual " << std::endl;
        Eigen::VectorXf residual = (data_T * (Pnd * data)).diagonal();
        if (print) std::cout << "residual : " << std::endl;
        if (print) std::cout << residual << std::endl;
        residual = residual.cwiseAbs();
        int num_points = 0;
        for (int idx = 0; idx < residual.size(); idx++)
        {
            if (print) std::cout << "threshold " << (subspace_dimensions - num_sample_points) * sigma * sigma << std::endl;
            if (residual(idx) < (subspace_dimensions - num_sample_points) * sigma * sigma)
            {
                if (print) std::cout << "adding  " << std::endl;
                num_points++;
            }
        }
        if (num_points > max_points)
        {
            if (print) std::cout << num_points << " to " << max_points << std::endl;
            if (print) std::cout << "copy residual" << residual << std::endl;
            max_points = num_points;
            final_residual = residual;
            final_columns = column_indices;
            if (print) std::cout << "copy final residual " << final_residual << std::endl;
        }
    }
    if (print) std::cout << "final residual " << std::endl;
    if (print) std::cout << final_residual << std::endl;
    double residual_threshold = 0.2;
    if (subspace_dimensions - num_sample_points < 11 && subspace_dimensions - num_sample_points > 0)
    {
        residual_threshold = sigma * sigma * chi_square_table.at(0).at(subspace_dimensions - num_sample_points);
        std::cout << "residual threshold: " << residual_threshold << std::endl;
    }
    for (int idx = 0; idx < final_residual.size(); idx++)
    {
        if (final_residual(idx) > residual_threshold)
        {
            outlier_points.push_back(trajectories.at(idx).at(trajectories.at(idx).size() - 2));
        }
    }
    std::vector<std::vector<cv::Point2f> > trajectory_subspace_vectors;
    for (int i = 0; i < final_columns.size(); i++)
    {
        trajectory_subspace_vectors.push_back(trajectories.at(final_columns.at(i)));
    }
    return trajectory_subspace_vectors;
}
开发者ID:sthoduka,项目名称:motion_detection,代码行数:96,代码来源:outlier_detector.cpp


注:本文中的eigen::VectorXf::cwiseAbs方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。