当前位置: 首页>>代码示例>>C++>>正文


C++ VectorXf::data方法代码示例

本文整理汇总了C++中eigen::VectorXf::data方法的典型用法代码示例。如果您正苦于以下问题:C++ VectorXf::data方法的具体用法?C++ VectorXf::data怎么用?C++ VectorXf::data使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::VectorXf的用法示例。


在下文中一共展示了VectorXf::data方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: if

float mmf::OptSO3MMFvMF::computeAssignment(uint32_t& N)
{
  N = this->cld_.counts().sum();
  // Compute log of the cluster weights and push them to GPU
  Eigen::VectorXf pi = Eigen::VectorXf::Ones(K()*6)*1000;
  std::cout << this->t_ << std::endl;
  std::cout<<"counts: "<<this->cld_.counts().transpose()<<std::endl;
  if (this->t_ == 0) {
    pi.fill(1.);
  } else if (this->t_ >24) {
    std::cout << "truncating noisy MFs: " << std::endl;
    for (uint32_t k=0; k<K()*6; ++k) {
      float count = this->cld_.counts().middleRows((k/6)*6,6).sum();
      pi(k) =  count > 0.10*N ? count : 1.e-20;
      std::cout << count  << " < " << 0.1*N << std::endl;
    }
  } else {
    // estimate the axis and MF proportions
//    pi += this->cld_.counts();
    // estimate only the MF proportions
    for (uint32_t k=0; k<K()*6; ++k)
      pi(k) += this->cld_.counts().middleRows((k/6)*6,6).sum();
    if (estimateTau_) {
      for (uint32_t k=0; k<K()*6; ++k)
        if (this->cld_.counts()(k) == 0) {
          taus_(k) = 0.; // uniform
        } else {
          Eigen::Vector3f mu = Eigen::Vector3f::Zero();
          mu((k%6)/2) = (k%6)%2==0?-1.:1.;
          mu = Rs_[k/6]*mu;
          taus_(k) = jsc::vMF<3>::MLEstimateTau(
              this->cld_.xSums().col(k).cast<double>(),
              mu.cast<double>(), this->cld_.counts()(k));
        }
    } else {
      taus_.fill(60.);
    }
  }
  std::cout<<"pi: "<<pi.transpose()<<std::endl;
  pi = (pi.array() / pi.sum()).array().log();
  std::cout<<"pi: "<<pi.transpose()<<std::endl;
  if (estimateTau_) {
    std::cout << pi.transpose() << std::endl;
    std::cout << taus_.transpose() << std::endl;
    for (uint32_t k=0; k<K()*6; ++k) {
      pi(k) -= jsc::vMF<3>::log2SinhOverZ(taus_(k)) - log(2.*M_PI);
    }
  }
  pi_.set(pi);
  Rot2Device();
  Eigen::VectorXf residuals = Eigen::VectorXf::Zero(K()*6);
  MMFvMFCostFctAssignmentGPU((float*)residuals.data(), d_cost, &N,
      d_N_, cld_.d_x(), d_weights_, cld_.d_z(), d_mu_, pi_.data(),
      cld_.N(), K());
  return residuals.sum();
};
开发者ID:jstraub,项目名称:mmf,代码行数:56,代码来源:optimizationSO3_mmfvmf.cpp

示例2: computeCorrelation

void FeatureEval::computeCorrelation(float * data, int vector_size, int size, std::vector<int> & big_to_small, int stride, int offset){

    stride = stride ? stride : vector_size;

    if(ll_->getSelection().size() == 0)
        return;

    std::set<uint16_t> labels;
    for(boost::weak_ptr<Layer> wlayer: ll_->getSelection()){
        for(uint16_t label : wlayer.lock()->getLabelSet())
            labels.insert(label);
    }

    std::vector<float> layer = get_scaled_layer_mask(cl_->active_->labels_,
                          labels,
                          big_to_small,
                          size);

    Eigen::MatrixXf correlation_mat = multi_correlate(layer, data, vector_size, size, stride, offset);
    Eigen::MatrixXf Rxx = correlation_mat.topLeftCorner(vector_size, vector_size);
    Eigen::VectorXf c = correlation_mat.block(0, vector_size, vector_size, 1);

    //std::cout << correlation_mat << std::endl;

    float R = c.transpose() * (Rxx.inverse() * c);

    qDebug() << "R^2: " << R;
    //qDebug() << "R: " << sqrt(R);

    reportResult(R, c.data(), vector_size);

    //Eigen::VectorXf tmp = (Rxx.inverse() * c);

    qDebug() << "Y -> X correlation <<<<<<<<<<<<<";
    std::cout << c << std::endl;
    //qDebug() << "Coefs <<<<<<<<<<<<<";
    //std::cout << tmp << std::endl;

}
开发者ID:circlingthesun,项目名称:Masters,代码行数:39,代码来源:featureeval.cpp

示例3: SplineLossyCompress

void TraceStoreCol::SplineLossyCompress(const std::string &strategy, int order, int flow_ix, char *bad_wells, 
                                        float *mad, size_t num_rows, size_t num_cols, size_t num_frames, size_t num_flows,
                                        int use_mesh_neighbors, size_t frame_stride, size_t flow_frame_stride, int16_t *data) {
  Eigen::MatrixXf Basis;
  vector<float> knots;
  FillInKnots(strategy, num_frames, knots);
  if (!knots.empty()) {
    int boundaries[2];
    boundaries[0] = 0;
    boundaries[1] = num_frames;
    basis_splines_endreps_local_v2(&knots[0], knots.size(), order, boundaries, sizeof(boundaries)/sizeof(boundaries[0]), Basis);
  }
  Eigen::MatrixXf SX = (Basis.transpose() * Basis).inverse() * Basis.transpose();
  Eigen::MatrixXf Y(frame_stride, num_frames);
  //  Eigen::MatrixXf FlowMeans(num_flows, num_frames);

  //  FlowMeans.setZero();
  int good_wells = 0;
  char *bad_start = bad_wells;
  char *bad_end = bad_start + frame_stride;
  while(bad_start != bad_end) {
    if (*bad_start++ == 0) {
      good_wells++;
    }
  }
  
  // if nothing good then skip it
  if (good_wells < MIN_SAMPLE_WELL) {
    return;
  }

  ChipReduction smoothed_avg;
  int x_clip = num_cols;
  int y_clip = num_rows;
  if (use_mesh_neighbors == 0) {
    x_clip = THUMBNAIL_SIZE;
    y_clip = THUMBNAIL_SIZE;
  }

  smoothed_avg.Init(num_rows, num_cols, num_frames,
                    SMOOTH_REDUCE_STEP, SMOOTH_REDUCE_STEP,
                    y_clip, x_clip,
                    SMOOTH_REDUCE_STEP * SMOOTH_REDUCE_STEP * .4);
  for (size_t frame_ix = 0; frame_ix < num_frames; frame_ix++) {
    smoothed_avg.ReduceFrame(data + flow_ix * frame_stride + frame_ix * flow_frame_stride, bad_wells, frame_ix);
  }
  smoothed_avg.SmoothBlocks(SMOOTH_REDUCE_REGION, SMOOTH_REDUCE_REGION);


  for (size_t frame_ix = 0; frame_ix < num_frames; frame_ix++) {
    float *y_start = Y.data() + frame_ix * frame_stride;
    float *y_end = y_start + frame_stride;
    int16_t *trace_start = data + flow_ix * frame_stride + frame_ix * flow_frame_stride;
    while(y_start != y_end) {
      *y_start++ = *trace_start++;
    }
  }
    
  // subtract off flow,frame avg
  for (size_t frame_ix = 0; frame_ix < num_frames; frame_ix++) {
    float *start = Y.data() + frame_stride * frame_ix;
    float *end = start + frame_stride;
    for (size_t row = 0; row < num_rows; row++) {
      for (size_t col = 0; col < num_cols; col++) {
        float avg = smoothed_avg.GetSmoothEst(row, col, frame_ix);
        *start++ -= avg;
      }
    }
  }

  // Get coefficients to solve
  Eigen::MatrixXf B = Y * SX.transpose();
  // Uncompress data into yhat matrix
  Eigen::MatrixXf Yhat = B * Basis.transpose();


  // add the flow/frame averages back
  for (size_t frame_ix = 0; frame_ix < num_frames; frame_ix++) {
    float *start = Y.data() + frame_stride * frame_ix;
    float *end = start + frame_stride;
    float *hstart = Yhat.data() + frame_stride * frame_ix;
    for (size_t row = 0; row < num_rows; row++) {
      for (size_t col = 0; col < num_cols; col++) {
        float avg = smoothed_avg.GetSmoothEst(row, col, frame_ix);
        *start++ += avg;
        *hstart++ += avg;
      }
    }
  }

  for (size_t frame_ix = 0; frame_ix < num_frames; frame_ix++) {
    float *yhat_start = Yhat.data() + frame_ix * frame_stride;
    float *yhat_end = yhat_start + frame_stride;
    int16_t *trace_start = data + flow_ix * frame_stride + frame_ix * flow_frame_stride;
    while(yhat_start != yhat_end) {
      *trace_start++ = (int)(*yhat_start + .5f);
      yhat_start++;
    }
  }

//.........这里部分代码省略.........
开发者ID:Lingrui,项目名称:TS,代码行数:101,代码来源:TraceStoreCol.cpp

示例4: apply

      void apply(Ea& ea)
      {
//      	boost::accumulators::accumulator_set<double, boost::accumulators::stats<boost::accumulators::tag::max> > acc_max;
//      	boost::accumulators::accumulator_set<double, boost::accumulators::stats<boost::accumulators::tag::min> > acc_min;

        SFERES_CONST size_t k = Params::novelty::k;
        // merge the population and the archive in a single archive
        pop_t archive = _archive;
        archive.insert(archive.end(), ea.pop().begin(), ea.pop().end());

        // we compute all the distances from pop(i) to archive(j) and store them
        Eigen::MatrixXf distances(ea.pop().size(), archive.size());
        novelty::_distance_f<Phen> f(ea.pop(), archive, distances);
        parallel::init();
        parallel::p_for(parallel::range_t(0, ea.pop().size()), f);

        // compute the sparseness of each individual of the population
        // and potentially add to the archive
        int added = 0;

        for (size_t i = 0; i < ea.pop().size(); ++i) {
          size_t nb_objs = ea.pop()[i]->fit().objs().size();
          Eigen::VectorXf vd = distances.row(i);

          // Get the k-nearest neighbors
          double n = 0.0;
          std::partial_sort(vd.data(),
                            vd.data() + k,
                            vd.data() + vd.size());

          // Sum up the total of distances from k-nearest neighbors
          // This is the novelty score
          n = vd.head<k>().sum() / k;

          // Set the novelty score to the last objective in the array of objectives
          ea.pop()[i]->fit().set_obj(nb_objs - 1, n);

//          std::cout << "rho = " << _rho_min << "; n = " << n << "\n";
//          acc_max(n);
//          acc_min(n);

          // Check if this individual is already in the archive
          if (!in_archive_already(ea.pop()[i]->id()) &&
          		(n > _rho_min			// Check if the novelty score passes the threshold
              || misc::rand<float>() < Params::novelty::add_to_archive_prob))
          {
          	// Add this individual to the permanent archive
          	_archive.push_back(ea.pop()[i]);

          	// Print this indiv just added
//            std::cout << "----> n = " << n << "; label = " << ea.pop()[i]->fit().label() << "; score = " << ea.pop()[i]->fit().score() << "; id = " << ea.pop()[i]->id()  <<"\n";
//          	std::cout << "----> n = " << n << "; label = " << "; id = " << ea.pop()[i]->id()  <<"\n";

            _not_added = 0;
            ++added;
          } else {
          	// Do not add this individual to the archive
            ++_not_added;
          }
        } // end for all individuals

        // update rho_min
        if (_not_added > Params::novelty::stalled_tresh)//2500
        {
          _rho_min *= 0.95;	// Lower rho_min
          _not_added = 0;		// After lowering the stalled threshold, we need to reset the _not_added count
        }
        if (_archive.size() > Params::novelty::k && added > Params::novelty::adding_tresh)//4
        {
          _rho_min *= 1.05f;	// Increase rho_min
        }

        std::cout<<"a size:"<<_archive.size()<<std::endl;

        // DEBUG
//        std::cout << "a size:"<<_archive.size()
//        		<< "; max: " << boost::accumulators::max(acc_max)
//        		<< "; min: " << boost::accumulators::min(acc_min)
//        		<< std::endl;

      }
开发者ID:CadeLaRen,项目名称:innovation-engine,代码行数:81,代码来源:novelty.hpp

示例5: run


//.........这里部分代码省略.........
			scale[((int)feat.y)*img.cols + (int)feat.x] = true;
		}

		// Adjust image values
		cv::Mat scaledImg = img.clone();
		scaledImg += 1;
		scaledImg *= (1 / 32.0f);

		// For each pixel in the image
		for (r = 0; r < scaledImg.rows; ++r)
		{
			min_row = (size_t)std::max(int(r - 1), 0);
			max_row = (size_t)std::min(scaledImg.rows - 1, int(r + 1));
			for (c = 0; c < scaledImg.cols; ++c)
			{
				// Increment pixel index
				++index;

				// If this is not a feature point
				if (!scale[index])
				{
					min_col = (size_t)std::max(int(c - 1), 0);
					max_col = (size_t)std::min(scaledImg.cols - 1, int(c + 1));
					neighborCount = 0;

					// Loop over 3x3 neighborhoods matrix
					// and calculate the variance of the intensities
					for (nr = min_row; nr <= max_row; ++nr)
					{
						for (nc = min_col; nc <= max_col; ++nc)
						{
							if (nr == r && nc == c) continue;
							weights[neighborCount++] = scaledImg.at<float>(nr, nc);
						}
					}
					weights[neighborCount] = scaledImg.at<float>(r, c);

					// Calculate the weights statistics
					getStat(weights, neighborCount + 1, m, v);
					m *= 0.6;
					if (v < EPS) v = EPS;	// Avoid division by 0

					// Apply weight function
					mWeightFunc(weights, neighborCount, scaledImg.at<float>(r, c), m, v);

					// Normalize the weights and set to coefficients
					sum = std::accumulate(weights.begin(), weights.begin() + neighborCount, 0.0f);
					i = 0;
					for (nr = min_row; nr <= max_row; ++nr)
					{
						for (nc = min_col; nc <= max_col; ++nc)
						{
							if (nr == r && nc == c) continue;
							nindex = nr*scaledImg.cols + nc;
							coefficients.push_back(Eigen::Triplet<float>(
								index, nindex, -weights[i++] / sum));
						}
					}
				}

				// Add center coefficient
				coefficients.push_back(Eigen::Triplet<float>(index, index, 1));
			}
		}

		// Build right side equation vector
		Eigen::VectorXf b = Eigen::VectorXf::Zero(pixels);
		for (i = 0; i < features.size(); ++i)
		{
			const FeatureType& feat = features[i];
			b[((int)feat.y)*scaledImg.cols + (int)feat.x] = feat.scale;
		}

		// Build left side equation matrix
		Eigen::SparseMatrix<float> A(pixels, pixels);
		A.setFromTriplets(coefficients.begin(), coefficients.end());

		/*/// Debug ///
		std::ofstream file("Output.m");
		cv::Mat_<int> rows(1, coefficients.size()), cols(1, coefficients.size());
		cv::Mat_<float> values(1, coefficients.size());
		for (i = 0; i < coefficients.size(); ++i)
		{
		rows.at<int>(i) = coefficients[i].row();
		cols.at<int>(i) = coefficients[i].col();
		values.at<float>(i) = coefficients[i].value();
		}
		file << "cpp_rows = " << rows << ";" << std::endl;
		file << "cpp_cols = " << cols << ";" << std::endl;
		file << "cpp_values = " << values << ";" << std::endl;
		/////////////*/

		// Solving
		Eigen::SparseLU<Eigen::SparseMatrix<float>> slu(A);
		Eigen::VectorXf x = slu.solve(b);

		// Copy to output
		scaleMap.resize(pixels);
		memcpy(scaleMap.data(), x.data(), pixels*sizeof(float));
	}
开发者ID:YuvalNirkin,项目名称:DenseCorrespondences,代码行数:101,代码来源:ScaleMaps.cpp


注:本文中的eigen::VectorXf::data方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。