当前位置: 首页>>代码示例>>C++>>正文


C++ VectorXf::cwiseProduct方法代码示例

本文整理汇总了C++中eigen::VectorXf::cwiseProduct方法的典型用法代码示例。如果您正苦于以下问题:C++ VectorXf::cwiseProduct方法的具体用法?C++ VectorXf::cwiseProduct怎么用?C++ VectorXf::cwiseProduct使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::VectorXf的用法示例。


在下文中一共展示了VectorXf::cwiseProduct方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: buildManifoldAndPerformFiltering


//.........这里部分代码省略.........
		//std::cout << "min_pixel_dist_to_manifold_squared=\n" << min_pixel_dist_to_manifold_squared_.head(10) << "\n";

		// for debug
// 		for (int i=0; i<inputSize; i++)
// 		{
// 			if (!g_isInfinite(wkiPsiBlur(i,0)))
// 				std::cout << "(" << i << "," << 0 << ")\n";
// 			if (!g_isInfinite(wkiPsiBlur(i,1)))
// 				std::cout << "(" << i << "," << 1 << ")\n";
// 			//if (!g_isInfinite(wkiPsiBlur(i,2)))
// 			//	std::cout << "(" << i << "," << 2 << ")\n";
// 		}
		//std::cout << wkiPsiBlur.norm() << "\n";

		Eigen::VectorXf rangeDiff(inputSize);
		for (int i=0; i<inputSize; i++)
		{
			Eigen::VectorXf n0 = wkiPsiBlur.row(i);
			Eigen::VectorXf n1 = input.row(i).tail(rangeDim_);
			n0.normalize();
			n1.normalize();
			rangeDiff(i) = 1.f-n0.dot(n1);
		}
		static bool bSaved = false;
		if (!bSaved)
		{
			ZFileHelper::saveEigenVectorToFile("rangeDiff.txt", rangeDiff);
			ZFileHelper::saveEigenVectorToFile("gaussian.txt", gaussianDistWeight);
			ZFileHelper::saveEigenMatrixToFile("splat.txt", psiSplat);
			ZFileHelper::saveEigenMatrixToFile("blur.txt", wkiPsiBlur);
			bSaved = true;
		}

		// Slicing
		Eigen::VectorXf wki = gaussianDistWeight;
		for (int i=0; i<inputSize; i++)
		{
			if (!clusterK[i]) continue;
			sum_w_ki_Psi_blur_.row(i) += wkiPsiBlur.row(i)*wki(i);
			sum_w_ki_Psi_blur_0_(i) += wkiPsiBlur0(i)*wki(i);
		}
		//////////////////////////////////////////////////////////////////////////
		// for debug
		wki_Psi_blurs_.push_back(Eigen::MatrixXf(inputSize, rangeDim_));
		wki_Psi_blur_0s_.push_back(Eigen::VectorXf(inputSize));
		Eigen::MatrixXf& lastM = wki_Psi_blurs_[wki_Psi_blurs_.size()-1];
		lastM.fill(0);
		Eigen::VectorXf& lastV = wki_Psi_blur_0s_[wki_Psi_blur_0s_.size()-1];
		lastV.fill(0);
		for (int i=0; i<inputSize; i++)
		{
			if (!clusterK[i]) continue;
			lastM.row(i) = wkiPsiBlur.row(i)*wki(i);
			lastV(i) = wkiPsiBlur0(i)*wki(i);
		}
		std::cout << sum_w_ki_Psi_blur_.norm() << "\n";
		//////////////////////////////////////////////////////////////////////////

		// compute two new manifolds eta_minus and eta_plus

		// test stopping criterion
		if (currentTreeLevel<filterPara_.tree_height)
		{
			// algorithm 1, Step 2: compute the eigenvector v1
			Eigen::VectorXf v1 = computeMaxEigenVector(diffX, clusterK);

			// algorithm 1, Step 3: Segment vertices into two clusters
			std::vector<bool> clusterMinus(inputSize, false);
			std::vector<bool> clusterPlus(inputSize, false);
			int countMinus=0;
			int countPlus =0;
			for (int i=0; i<inputSize; i++)
			{
				float dot = diffX.row(i).dot(v1);
				if (dot<0 && clusterK[i]) {countMinus++; verticeClusterIds[i] =etaI+0.5; clusterMinus[i] = true;}
				if (dot>=0 && clusterK[i]) {countPlus++; verticeClusterIds[i] =etaI-0.5; clusterPlus[i] = true;}
			}
			std::cout << "Minus manifold: " << countMinus << "\n";
			std::cout << "Plus manifold: " << countPlus << "\n"; 
// 			Eigen::MatrixXf diffXManifold(inputSize, spatialDim_+rangeDim_);
// 			diffXManifold.block(0, 0, inputSize, spatialDim_) = input.block(0, 0, inputSize, spatialDim_);
// 			diffXManifold.block(0, spatialDim_, inputSize, rangeDim_) = diffX;

			// algorithm 1, Step 4: Compute new manifolds by weighted low-pass filtering  -- Eq. (7)(8)
			Eigen::VectorXf theta(inputSize);
			theta.fill(1);
			theta = theta - wki.cwiseProduct(wki);
			pGaussianFilter_->setKernelFunc(NULL);
			CHECK_FALSE_AND_RETURN(pGaussianFilter_->apply(input, spatialDim_, rangeDim_, theta, clusterMinus));
			Eigen::MatrixXf etaMinus = pGaussianFilter_->getResult();
			CHECK_FALSE_AND_RETURN(pGaussianFilter_->apply(input, spatialDim_, rangeDim_, theta, clusterPlus));
			Eigen::MatrixXf etaPlus = pGaussianFilter_->getResult();

			// algorithm 1, Step 5: recursively build more manifolds
			CHECK_FALSE_AND_RETURN(buildManifoldAndPerformFiltering(input, etaMinus, clusterMinus, sigma_s, sigma_r, currentTreeLevel+1));
			CHECK_FALSE_AND_RETURN(buildManifoldAndPerformFiltering(input, etaPlus, clusterPlus, sigma_s, sigma_r, currentTreeLevel+1));
		}

		return true;
	}
开发者ID:zzez12,项目名称:ZFramework,代码行数:101,代码来源:ZMeshFilterManifold.cpp


注:本文中的eigen::VectorXf::cwiseProduct方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。