当前位置: 首页>>代码示例>>C++>>正文


C++ MatrixXd::topRightCorner方法代码示例

本文整理汇总了C++中eigen::MatrixXd::topRightCorner方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixXd::topRightCorner方法的具体用法?C++ MatrixXd::topRightCorner怎么用?C++ MatrixXd::topRightCorner使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::MatrixXd的用法示例。


在下文中一共展示了MatrixXd::topRightCorner方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

/* static */ bool ocraWbiConversions::wbiToOcraSegJacobian(const Eigen::MatrixXd &jac, Eigen::MatrixXd &J)
    {
        int dof = DIM_T + DIM_R;
        if(dof != jac.rows() || dof != J.rows()||jac.cols() != J.cols())
        {
            std::cout<<"ERROR: Input and output matrices dimensions should be the same" <<std::endl;
            return false;
        }

        // FOR FULL n+6 Jacobian ONLY
        Eigen::MatrixXd jac5,jac6;
        Eigen::Matrix3d jac1,jac2,jac3,jac4;
        jac5.resize(3,jac.cols()-6);
        jac6.resize(3,jac.cols()-6);


        jac1 = jac.topLeftCorner(3,3);
        jac2 = jac.block<3,3>(0,3);
        jac3 = jac.bottomLeftCorner(3,3);
        jac4 = jac.block<3,3>(3,3);
        jac5 = jac.topRightCorner(3,jac.cols()-6);
        jac6 = jac.bottomRightCorner(3,jac.cols()-6);

        J.topLeftCorner(3,3) = jac4;
        J.block<3,3>(0,3) = jac3;
        J.bottomLeftCorner(3,3) = jac2;
        J.block<3,3>(3,3) = jac1;
        J.topRightCorner(3,jac.cols()-6) = jac6;
        J.bottomRightCorner(3,jac.cols()-6) = jac5;

        return true;
    }
开发者ID:alexandrelheinen,项目名称:ocra-wbi-plugins,代码行数:32,代码来源:ocraWbiUtil.cpp

示例2: H

TEST(SparseMatrixFunctionTests, testSchurComplement1)
{
  try {
    using namespace aslam::backend;
    typedef sparse_block_matrix::SparseBlockMatrix<Eigen::MatrixXd> SparseBlockMatrix;
    // Create the sparse Hessian. Two dense blocks. Three sparse.
    int structure[5] = {2, 2, 3, 3, 3};
    std::partial_sum(structure, structure + 5, structure);
    int marginalizedStartingBlock = 2;
    int marginalizedStartingIndex = structure[ marginalizedStartingBlock - 1 ];
    double lambda = 1;
    SparseBlockMatrix H(structure, structure, 5, 5, true);
    Eigen::VectorXd e(H.rows());
    e.setRandom();
    Eigen::VectorXd b(H.rowBaseOfBlock(marginalizedStartingBlock));
    b.setZero();
    boost::shared_ptr<SparseBlockMatrix> A(H.slice(0, marginalizedStartingBlock, 0, marginalizedStartingBlock, true));
    ASSERT_EQ(marginalizedStartingBlock, A->bRows());
    ASSERT_EQ(marginalizedStartingBlock, A->bCols());
    A->clear(false);
    std::vector<Eigen::MatrixXd> invVi;
    invVi.resize(H.bRows() - marginalizedStartingBlock);
    // Fill in H.
    *H.block(0, 0, true) = sm::eigen::randomCovariance<2>() * 100;
    *H.block(1, 1, true) = sm::eigen::randomCovariance<2>() * 100;
    *H.block(2, 2, true) = sm::eigen::randomCovariance<3>() * 100;
    *H.block(3, 3, true) = sm::eigen::randomCovariance<3>() * 100;
    *H.block(4, 4, true) = sm::eigen::randomCovariance<3>() * 100;
    // Start with two off diagonals.
    H.block(0, 4, true)->setRandom();
    H.block(0, 4, true)->array() *= 100;
    H.block(1, 4, true)->setRandom();
    H.block(1, 4, true)->array() *= 100;
    //std::cout << "H:\n" << H << std::endl;
    applySchurComplement(H,
                         e,
                         lambda,
                         marginalizedStartingBlock,
                         true,
                         *A,
                         invVi,
                         b);
    Eigen::MatrixXd Hd = H.toDense();
    Eigen::MatrixXd U = Hd.topLeftCorner(marginalizedStartingIndex, marginalizedStartingIndex);
    Eigen::MatrixXd V = Hd.bottomRightCorner(H.rows() - marginalizedStartingIndex, H.rows() - marginalizedStartingIndex);
    Eigen::MatrixXd W = Hd.topRightCorner(marginalizedStartingIndex, H.rows() - marginalizedStartingIndex);
    V.diagonal().array() += lambda;
    Eigen::MatrixXd AA = U - W * V.inverse() * W.transpose();
    AA.diagonal().array() += lambda;
    Eigen::VectorXd epsSparse = e.tail(e.size() - marginalizedStartingIndex);
    Eigen::VectorXd epsDense = e.head(marginalizedStartingIndex);
    Eigen::VectorXd bb = epsDense - W * V.inverse() * epsSparse;
    {
      SCOPED_TRACE("");
      Eigen::MatrixXd Asa = A->toDense().selfadjointView<Eigen::Upper>();
      sm::eigen::assertNear(Asa, AA, 1e-12, SM_SOURCE_FILE_POS, "Testing the lhs schur complement");
    }
    {
      SCOPED_TRACE("");
      sm::eigen::assertNear(b, bb, 1e-12, SM_SOURCE_FILE_POS, "Testing the rhs schur complement");
    }
    // Let's try it again to make sure stuff gets initialized correctly.
    applySchurComplement(H,
                         e,
                         lambda,
                         marginalizedStartingBlock,
                         true,
                         *A,
                         invVi,
                         b);
    {
      SCOPED_TRACE("");
      Eigen::MatrixXd Asa = A->toDense().selfadjointView<Eigen::Upper>();
      sm::eigen::assertNear(Asa, AA, 1e-12, SM_SOURCE_FILE_POS, "Testing the lhs schur complement");
    }
    {
      SCOPED_TRACE("");
      sm::eigen::assertNear(b, bb, 1e-12, SM_SOURCE_FILE_POS, "Testing the rhs schur complement");
    }
    // Now we check the update function.
    Eigen::VectorXd dx(marginalizedStartingIndex);
    dx.setRandom();
    Eigen::VectorXd denseDs = V.inverse() * (epsSparse - W.transpose() * dx);
    for (int i = 0; i < H.bRows() - marginalizedStartingBlock; ++i) {
      Eigen::VectorXd outDsi;
      buildDsi(i, H, e, marginalizedStartingBlock, invVi[i], dx, outDsi);
      Eigen::VectorXd dsi = denseDs.segment(H.rowBaseOfBlock(i + marginalizedStartingBlock) - marginalizedStartingIndex, H.rowsOfBlock(i + marginalizedStartingBlock));
      sm::eigen::assertNear(outDsi, dsi, 1e-12, SM_SOURCE_FILE_POS, "Checking the update step calculation");
    }
  } catch (const std::exception& e) {
    FAIL() << "Exception: " << e.what();
  }
}
开发者ID:AliAlawieh,项目名称:kalibr,代码行数:93,代码来源:test_sparse_matrix_functions.cpp


注:本文中的eigen::MatrixXd::topRightCorner方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。