本文整理汇总了C++中eigen::MatrixXd类的典型用法代码示例。如果您正苦于以下问题:C++ MatrixXd类的具体用法?C++ MatrixXd怎么用?C++ MatrixXd使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MatrixXd类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: resize
inline void resize(Eigen::MatrixXd & m,
vcl_size_t new_rows,
vcl_size_t new_cols)
{
m.resize(new_rows, new_cols);
}
示例2: cmid
IGL_INLINE bool igl::copyleft::cgal::signed_distance_isosurface(
const Eigen::MatrixXd & IV,
const Eigen::MatrixXi & IF,
const double level,
const double angle_bound,
const double radius_bound,
const double distance_bound,
const SignedDistanceType sign_type,
Eigen::MatrixXd & V,
Eigen::MatrixXi & F)
{
using namespace std;
using namespace Eigen;
// default triangulation for Surface_mesher
typedef CGAL::Surface_mesh_default_triangulation_3 Tr;
// c2t3
typedef CGAL::Complex_2_in_triangulation_3<Tr> C2t3;
typedef Tr::Geom_traits GT;//Kernel
typedef GT::Sphere_3 Sphere_3;
typedef GT::Point_3 Point_3;
typedef GT::FT FT;
typedef std::function<FT (Point_3)> Function;
typedef CGAL::Implicit_surface_3<GT, Function> Surface_3;
AABB<Eigen::MatrixXd,3> tree;
tree.init(IV,IF);
Eigen::MatrixXd FN,VN,EN;
Eigen::MatrixXi E;
Eigen::VectorXi EMAP;
WindingNumberAABB< Eigen::Vector3d, Eigen::MatrixXd, Eigen::MatrixXi > hier;
switch(sign_type)
{
default:
assert(false && "Unknown SignedDistanceType");
case SIGNED_DISTANCE_TYPE_UNSIGNED:
// do nothing
break;
case SIGNED_DISTANCE_TYPE_DEFAULT:
case SIGNED_DISTANCE_TYPE_WINDING_NUMBER:
hier.set_mesh(IV,IF);
hier.grow();
break;
case SIGNED_DISTANCE_TYPE_PSEUDONORMAL:
// "Signed Distance Computation Using the Angle Weighted Pseudonormal"
// [Bærentzen & Aanæs 2005]
per_face_normals(IV,IF,FN);
per_vertex_normals(IV,IF,PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE,FN,VN);
per_edge_normals(
IV,IF,PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM,FN,EN,E,EMAP);
break;
}
Tr tr; // 3D-Delaunay triangulation
C2t3 c2t3 (tr); // 2D-complex in 3D-Delaunay triangulation
// defining the surface
const auto & IVmax = IV.colwise().maxCoeff();
const auto & IVmin = IV.colwise().minCoeff();
const double bbd = (IVmax-IVmin).norm();
const double r = bbd/2.;
const auto & IVmid = 0.5*(IVmax + IVmin);
// Supposedly the implict needs to evaluate to <0 at cmid...
// http://doc.cgal.org/latest/Surface_mesher/classCGAL_1_1Implicit__surface__3.html
Point_3 cmid(IVmid(0),IVmid(1),IVmid(2));
Function fun;
switch(sign_type)
{
default:
assert(false && "Unknown SignedDistanceType");
case SIGNED_DISTANCE_TYPE_UNSIGNED:
fun =
[&tree,&IV,&IF,&level](const Point_3 & q) -> FT
{
int i;
RowVector3d c;
const double sd = tree.squared_distance(
IV,IF,RowVector3d(q.x(),q.y(),q.z()),i,c);
return sd-level;
};
case SIGNED_DISTANCE_TYPE_DEFAULT:
case SIGNED_DISTANCE_TYPE_WINDING_NUMBER:
fun =
[&tree,&IV,&IF,&hier,&level](const Point_3 & q) -> FT
{
const double sd = signed_distance_winding_number(
tree,IV,IF,hier,Vector3d(q.x(),q.y(),q.z()));
return sd-level;
};
break;
case SIGNED_DISTANCE_TYPE_PSEUDONORMAL:
fun = [&tree,&IV,&IF,&FN,&VN,&EN,&EMAP,&level](const Point_3 & q) -> FT
{
const double sd =
igl::signed_distance_pseudonormal(
tree,IV,IF,FN,VN,EN,EMAP,RowVector3d(q.x(),q.y(),q.z()));
return sd- level;
};
break;
}
//.........这里部分代码省略.........
示例3: Lemke
int Lemke(const Eigen::MatrixXd& _M, const Eigen::VectorXd& _q, Eigen::VectorXd& _z)
{
int n = _q.size();
const double zer_tol = 1e-5;
const double piv_tol = 1e-8;
int maxiter = 1000;
int err = 0;
if (_q.minCoeff() > 0)
{
// LOG(INFO) << "Trivial solution exists.";
_z = Eigen::VectorXd::Zero(n);
return err;
}
_z = Eigen::VectorXd::Zero(2 * n);
int iter = 0;
double theta = 0;
double ratio = 0;
int leaving = 0;
Eigen::VectorXd Be = Eigen::VectorXd::Constant(n, 1);
Eigen::VectorXd x = _q;
std::vector<int> bas;
std::vector<int> nonbas;
int t = 2 * n + 1;
int entering = t;
bas.clear();
nonbas.clear();
for (int i = 0; i < n; ++i)
{
bas.push_back(i);
}
Eigen::MatrixXd B = -Eigen::MatrixXd::Identity(n, n);
for (int i = 0; i < bas.size(); ++i) {
B.col(bas[i]) = _M.col(bas[i]);
}
x = -B.partialPivLu().solve(_q);
Eigen::VectorXd minuxX = -x;
int lvindex;
double tval = minuxX.maxCoeff(&lvindex);
leaving = bas[lvindex];
bas[lvindex] = t;
Eigen::VectorXd U = Eigen::VectorXd::Zero(n);
for (int i = 0; i < n; ++i)
{
if (x[i] < 0)
U[i] = 1;
}
Be = -(B * U);
x += tval * U;
x[lvindex] = tval;
B.col(lvindex) = Be;
for (iter = 0; iter < maxiter; ++iter)
{
if (leaving == t)
{
break;
}
else if (leaving < n)
{
entering = n + leaving;
Be = Eigen::VectorXd::Zero(n);
Be[leaving] = -1;
}
else
{
entering = leaving - n;
Be = _M.col(entering);
}
Eigen::VectorXd d = B.partialPivLu().solve(Be);
std::vector<int> j;
for (int i = 0; i < n; ++i)
{
if (d[i] > piv_tol)
j.push_back(i);
}
if (j.empty())
{
// err = 2;
break;
}
int jSize = static_cast<int>(j.size());
Eigen::VectorXd minRatio(jSize);
for (int i = 0; i < jSize; ++i)
{
minRatio[i] = (x[j[i]] + zer_tol) / d[j[i]];
}
//.........这里部分代码省略.........
示例4: getCentersAndWidths
/** \todo Document this rather complex function */
void MetaParametersLWR::getCentersAndWidths(const VectorXd& min, const VectorXd& max, Eigen::MatrixXd& centers, Eigen::MatrixXd& widths) const
{
int n_dims = getExpectedInputDim();
assert(min.size()==n_dims);
assert(max.size()==n_dims);
vector<VectorXd> centers_per_dim_local(n_dims);
if (!centers_per_dim_.empty())
{
centers_per_dim_local = centers_per_dim_;
}
else
{
// Centers are not know yet, compute them based on min and max
for (int i_dim=0; i_dim<n_dims; i_dim++)
centers_per_dim_local[i_dim] = VectorXd::LinSpaced(n_bfs_per_dim_[i_dim],min[i_dim],max[i_dim]);
}
// Determine the widths from the centers (separately for each dimension)
vector<VectorXd> widths_per_dim_local(n_dims);
for (int i_dim=0; i_dim<n_dims; i_dim++)
{
VectorXd cur_centers = centers_per_dim_local[i_dim]; // Abbreviation for convenience
int n_centers = cur_centers.size();
VectorXd cur_widths(n_centers);
if (n_centers==1)
{
cur_widths[0] = 1.0;
}
else if (n_centers==2)
{
cur_widths.fill(sqrt(overlap_*(cur_centers[1]-cur_centers[0])));
}
else
{
cur_widths[0] = sqrt(overlap_*fabs(cur_centers[1]-cur_centers[0]));
cur_widths[n_centers-1] = sqrt(overlap_*fabs(cur_centers[n_centers-1]-cur_centers[n_centers-2]));
for (int cc=1; cc<n_centers-1; cc++)
{
double width_left = sqrt(overlap_*fabs(cur_centers[cc-1]-cur_centers[cc]));
double width_right = sqrt(overlap_*fabs(cur_centers[cc+1]-cur_centers[cc]));
// Recommended width is the average of the recommended widths for left and right
cur_widths[cc] = 0.5*(width_left+width_right);
}
}
widths_per_dim_local[i_dim] = cur_widths;
}
VectorXd digit_max(n_dims);
int n_centers = 1;
for (int i_dim=0; i_dim<n_dims; i_dim++)
{
n_centers = n_centers*centers_per_dim_local[i_dim].size();
digit_max[i_dim] = centers_per_dim_local[i_dim].size();
}
VectorXi digit = VectorXi::Zero(n_dims);
centers.resize(n_centers,n_dims);
widths.resize(n_centers,n_dims);
int i_center=0;
while (digit[0]<digit_max(0))
{
for (int i_dim=0; i_dim<n_dims; i_dim++)
{
centers(i_center,i_dim) = centers_per_dim_local[i_dim][digit[i_dim]];
widths(i_center,i_dim) = widths_per_dim_local[i_dim][digit[i_dim]];
}
i_center++;
// Increment last digit by one
digit[n_dims-1]++;
for (int i_dim=n_dims-1; i_dim>0; i_dim--)
{
if (digit[i_dim]>=digit_max[i_dim])
{
digit[i_dim] = 0;
digit[i_dim-1]++;
}
}
}
}
示例5: setDensityMatrix
bool GaussianSet::setDensityMatrix(const Eigen::MatrixXd &m)
{
m_density.resize(m.rows(), m.cols());
m_density = m;
return true;
}
示例6: symmetryBlocking
/*! \fn inline void symmetryBlocking(Eigen::MatrixXd & matrix, int cavitySize, int ntsirr, int nr_irrep)
* \param[out] matrix the matrix to be block-diagonalized
* \param[in] cavitySize the size of the cavity (size of the matrix)
* \param[in] ntsirr the size of the irreducible portion of the cavity (size of the blocks)
* \param[in] nr_irrep the number of irreducible representations (number of blocks)
*/
inline void symmetryBlocking(Eigen::MatrixXd & matrix, size_t cavitySize, int ntsirr,
int nr_irrep)
{
// This function implements the simmetry-blocking of the PCM
// matrix due to point group symmetry as reported in:
// L. Frediani, R. Cammi, C. S. Pomelli, J. Tomasi and K. Ruud, J. Comput.Chem. 25, 375 (2003)
// u is the character table for the group (t in the paper)
Eigen::MatrixXd u = Eigen::MatrixXd::Zero(nr_irrep, nr_irrep);
for (int i = 0; i < nr_irrep; ++i) {
for (int j = 0; j < nr_irrep; ++j) {
u(i, j) = parity(i&j);
}
}
// Naming of indices:
// a, b, c, d run over the total size of the cavity (N)
// i, j, k, l run over the number of irreps (n)
// p, q, r, s run over the irreducible size of the cavity (N/n)
// Instead of forming U (T in the paper) and then perform the dense
// multiplication, we multiply block-by-block using just the u matrix.
// matrix = U * matrix * Ut; U * Ut = Ut * U = id
// First half-transformation, i.e. first_half = matrix * Ut
Eigen::MatrixXd first_half = Eigen::MatrixXd::Zero(cavitySize, cavitySize);
for (int i = 0; i < nr_irrep; ++i) {
int ioff = i * ntsirr;
for (int k = 0; k < nr_irrep; ++k) {
int koff = k * ntsirr;
for (int j = 0; j < nr_irrep; ++j) {
int joff = j * ntsirr;
double ujk = u(j, k) / nr_irrep;
for (int p = 0; p < ntsirr; ++p) {
int a = ioff + p;
for (int q = 0; q < ntsirr; ++q) {
int b = joff + q;
int c = koff + q;
first_half(a, c) += matrix(a, b) * ujk;
}
}
}
}
}
// Second half-transformation, i.e. matrix = U * first_half
matrix.setZero(cavitySize, cavitySize);
for (int i = 0; i < nr_irrep; ++i) {
int ioff = i * ntsirr;
for (int k = 0; k < nr_irrep; ++k) {
int koff = k * ntsirr;
for (int j = 0; j < nr_irrep; ++j) {
int joff = j * ntsirr;
double uij = u(i, j);
for (int p = 0; p < ntsirr; ++p) {
int a = ioff + p;
int b = joff + p;
for (int q = 0; q < ntsirr; ++q) {
int c = koff + q;
matrix(a, c) += uij * first_half(b, c);
}
}
}
}
}
// Traverse the matrix and discard numerical zeros
for (size_t a = 0; a < cavitySize; ++a) {
for (size_t b = 0; b < cavitySize; ++b) {
if (numericalZero(matrix(a, b))) {
matrix(a, b) = 0.0;
}
}
}
}
示例7: oaunittest
/** unittest for oapackage
*
* Returns UNITTEST_SUCCESS if all tests are ok.
*
*/
int oaunittest (int verbose, int writetests = 0, int randval = 0) {
double t0 = get_time_ms ();
const char *bstr = "OA unittest";
cprintf (verbose, "%s: start\n", bstr);
srand (randval);
int allgood = UNITTEST_SUCCESS;
Combinations::initialize_number_combinations (20);
/* constructors */
{
cprintf (verbose, "%s: interaction matrices\n", bstr);
array_link al = exampleArray (2);
Eigen::MatrixXd m1 = array2xfeigen (al);
Eigen::MatrixXd m2 = arraylink2eigen (array2xf (al));
Eigen::MatrixXd dm = m1 - m2;
int sum = dm.sum ();
myassert (sum == 0, "unittest error: construction of interaction matrices\n");
}
cprintf(verbose, "%s: reduceConferenceTransformation\n", bstr);
myassert(unittest_reduceConferenceTransformation()==0, "unittest unittest_reduceConferenceTransformation failed");
/* constructors */
{
cprintf (verbose, "%s: array manipulation operations\n", bstr);
test_array_manipulation (verbose);
}
/* double conference matrices */
{
cprintf (verbose, "%s: double conference matrices\n", bstr);
array_link al = exampleArray (36, verbose);
myassert (al.is_conference (2), "check on double conference design type");
myassert (testLMC0checkDC (al, verbose >= 2), "testLMC0checkDC");
}
/* conference matrices */
{
cprintf (verbose, "%s: conference matrices\n", bstr);
int N = 4;
conference_t ctype (N, N, 0);
arraylist_t kk;
array_link al = ctype.create_root ();
kk.push_back (al);
for (int extcol = 2; extcol < N; extcol++) {
kk = extend_conference (kk, ctype, 0);
}
myassert (kk.size () == 1, "unittest error: conference matrices for N=4\n");
}
{
cprintf (verbose, "%s: generators for conference matrix extensions\n", bstr);
test_conference_candidate_generators (verbose);
}
{
cprintf (verbose, "%s: conference matrix Fvalues\n", bstr);
array_link al = exampleArray (22, 0);
if (verbose >= 2)
al.show ();
if (0) {
std::vector< int > f3 = al.FvaluesConference (3);
if (verbose >= 2) {
printf ("F3: ");
display_vector (f3);
printf ("\n");
}
}
const int N = al.n_rows;
jstructconference_t js (N, 4);
std::vector< int > f4 = al.FvaluesConference (4);
std::vector< int > j4 = js.Jvalues ();
if (verbose >= 2) {
printf ("j4: ");
display_vector (j4);
printf ("\n");
printf ("F4: ");
display_vector (f4);
printf ("\n");
}
//.........这里部分代码省略.........
示例8: animatePath
void NewVizManager::animatePath(const ItompTrajectoryConstPtr& trajectory,
const robot_state::RobotStatePtr& robot_state, bool is_best)
{
if (!is_best)
return;
// marker array
visualization_msgs::MarkerArray ma;
std::vector<std::string> link_names = robot_model_->getMoveitRobotModel()->getLinkModelNames();
std_msgs::ColorRGBA color = colors_[WHITE];
color.a = 1.0;
ros::Duration dur(3600.0);
for (unsigned int point = 0; point < trajectory->getNumPoints(); ++point)
{
ma.markers.clear();
const Eigen::MatrixXd mat = trajectory->getElementTrajectory(
ItompTrajectory::COMPONENT_TYPE_POSITION,
ItompTrajectory::SUB_COMPONENT_TYPE_JOINT)->getTrajectoryPoint(point);
robot_state->setVariablePositions(mat.data());
std::string ns = "frame_" + boost::lexical_cast<std::string>(point);
robot_state->getRobotMarkers(ma, link_names, color, ns, dur);
for (int i = 0; i < ma.markers.size(); ++i)
ma.markers[i].mesh_use_embedded_materials = true;
vis_marker_array_publisher_path_.publish(ma);
}
// MotionPlanning -> Planned Path -> trajectory
moveit_msgs::DisplayTrajectory display_trajectory;
int num_all_joints = robot_state->getVariableCount();
ElementTrajectoryConstPtr joint_trajectory = trajectory->getElementTrajectory(ItompTrajectory::COMPONENT_TYPE_POSITION,
ItompTrajectory::SUB_COMPONENT_TYPE_JOINT);
robot_trajectory::RobotTrajectoryPtr response_trajectory = boost::make_shared<robot_trajectory::RobotTrajectory>(robot_model_->getMoveitRobotModel(), "");
robot_state::RobotState ks = *robot_state;
std::vector<double> positions(num_all_joints);
double dt = trajectory->getDiscretization();
// TODO:
int num_return_points = joint_trajectory->getNumPoints();
for (std::size_t i = 0; i < num_return_points; ++i)
{
for (std::size_t j = 0; j < num_all_joints; j++)
{
positions[j] = (*joint_trajectory)(i, j);
}
ks.setVariablePositions(&positions[0]);
// TODO: copy vel/acc
ks.update();
response_trajectory->addSuffixWayPoint(ks, dt);
}
moveit_msgs::RobotTrajectory trajectory_msg;
response_trajectory->getRobotTrajectoryMsg(trajectory_msg);
display_trajectory.trajectory.push_back(trajectory_msg);
ros::NodeHandle node_handle;
static ros::Publisher display_publisher = node_handle.advertise<moveit_msgs::DisplayTrajectory>("/itomp_planner/display_planned_path", 1, true);
display_publisher.publish(display_trajectory);
}
示例9: signed_distance
IGL_INLINE void igl::signed_distance(
const Eigen::MatrixXd & P,
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
const SignedDistanceType sign_type,
Eigen::VectorXd & S,
Eigen::VectorXi & I,
Eigen::MatrixXd & C,
Eigen::MatrixXd & N)
{
using namespace Eigen;
using namespace std;
assert(V.cols() == 3 && "V should have 3d positions");
assert(P.cols() == 3 && "P should have 3d positions");
// Only unsigned distance is supported for non-triangles
if(sign_type != SIGNED_DISTANCE_TYPE_UNSIGNED)
{
assert(F.cols() == 3 && "F should have triangles");
}
// Prepare distance computation
AABB<MatrixXd,3> tree;
tree.init(V,F);
Eigen::MatrixXd FN,VN,EN;
Eigen::MatrixXi E;
Eigen::VectorXi EMAP;
WindingNumberAABB<Eigen::Vector3d> hier;
switch(sign_type)
{
default:
assert(false && "Unknown SignedDistanceType");
case SIGNED_DISTANCE_TYPE_UNSIGNED:
// do nothing
break;
case SIGNED_DISTANCE_TYPE_DEFAULT:
case SIGNED_DISTANCE_TYPE_WINDING_NUMBER:
hier.set_mesh(V,F);
hier.grow();
break;
case SIGNED_DISTANCE_TYPE_PSEUDONORMAL:
// "Signed Distance Computation Using the Angle Weighted Pseudonormal"
// [Bærentzen & Aanæs 2005]
per_face_normals(V,F,FN);
per_vertex_normals(V,F,PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE,FN,VN);
per_edge_normals(
V,F,PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM,FN,EN,E,EMAP);
N.resize(P.rows(),3);
break;
}
S.resize(P.rows(),1);
I.resize(P.rows(),1);
C.resize(P.rows(),3);
for(int p = 0;p<P.rows();p++)
{
const RowVector3d q = P.row(p);
double s,sqrd;
RowVector3d c;
int i=-1;
switch(sign_type)
{
default:
assert(false && "Unknown SignedDistanceType");
case SIGNED_DISTANCE_TYPE_UNSIGNED:
s = 1.;
sqrd = tree.squared_distance(V,F,q,i,c);
break;
case SIGNED_DISTANCE_TYPE_DEFAULT:
case SIGNED_DISTANCE_TYPE_WINDING_NUMBER:
signed_distance_winding_number(tree,V,F,hier,q,s,sqrd,i,c);
break;
case SIGNED_DISTANCE_TYPE_PSEUDONORMAL:
{
Eigen::RowVector3d n;
signed_distance_pseudonormal(tree,V,F,FN,VN,EN,EMAP,q,s,sqrd,i,c,n);
N.row(p) = n;
break;
}
}
I(p) = i;
S(p) = s*sqrt(sqrd);
C.row(p) = c;
}
}
示例10: display
void display()
{
using namespace igl;
using namespace std;
using namespace Eigen;
const float back[4] = {30.0/255.0,30.0/255.0,50.0/255.0,0};
glClearColor(back[0],back[1],back[2],0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if(is_animating)
{
double t = (get_seconds() - animation_start_time)/ANIMATION_DURATION;
if(t > 1)
{
t = 1;
is_animating = false;
}
Quaterniond q = animation_from_quat.slerp(t,animation_to_quat).normalized();
auto & camera = s.camera;
camera.orbit(q.conjugate());
}
glEnable(GL_DEPTH_TEST);
glEnable(GL_NORMALIZE);
lights();
push_scene();
// Draw a nice floor
glEnable(GL_DEPTH_TEST);
glPushMatrix();
const double floor_offset =
-2./bbd*(V.col(1).maxCoeff()-Vmid(1));
glTranslated(0,floor_offset,0);
const float GREY[4] = {0.5,0.5,0.6,1.0};
const float DARK_GREY[4] = {0.2,0.2,0.3,1.0};
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
draw_floor(GREY,DARK_GREY);
glPopMatrix();
push_object();
// Set material properties
glDisable(GL_COLOR_MATERIAL);
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, SILVER_AMBIENT);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, SILVER_DIFFUSE );
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, SILVER_SPECULAR);
glMaterialf (GL_FRONT_AND_BACK, GL_SHININESS, 128);
typedef std::vector<
Eigen::Quaterniond,Eigen::aligned_allocator<Eigen::Quaterniond> >
RotationList;
RotationList dQ(BE.rows(),Quaterniond::Identity()),vQ;
vector<Vector3d> vT;
Matrix3d A = Matrix3d::Identity();
for(int e = 0;e<BE.rows();e++)
{
dQ[e] = AngleAxisd((sin(get_seconds()+e))*0.06*PI,A.col(e%3));
}
forward_kinematics(C,BE,P,dQ,vQ,vT);
const int dim = C.cols();
MatrixXd T(BE.rows()*(dim+1),dim);
for(int e = 0;e<BE.rows();e++)
{
Affine3d a = Affine3d::Identity();
a.translate(vT[e]);
a.rotate(vQ[e]);
T.block(e*(dim+1),0,dim+1,dim) =
a.matrix().transpose().block(0,0,dim+1,dim);
}
if(wireframe)
{
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
}
glLineWidth(1.0);
MatrixXd U = M*T;
per_face_normals(U,F,N);
draw_mesh(U,F,N);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
if(skeleton_on_top)
{
glDisable(GL_DEPTH_TEST);
}
switch(skel_style)
{
default:
case SKEL_STYLE_TYPE_3D:
draw_skeleton_3d(C,BE,T,MAYA_VIOLET,bbd*0.5);
break;
case SKEL_STYLE_TYPE_VECTOR_GRAPHICS:
draw_skeleton_vector_graphics(C,BE,T);
break;
}
pop_object();
pop_scene();
//.........这里部分代码省略.........
示例11:
inline vcl_size_t size2(Eigen::MatrixXd const & m) { return m.cols(); }
示例12: ComputeP_NormalizedDLT
Eigen::MatrixXd ComputeP_NormalizedDLT(const Point2DVector& points2D, const Point3DVector& points3D)
{
unsigned int numberOfPoints = points2D.size();
if(points3D.size() != numberOfPoints)
{
std::stringstream ss;
ss << "ComputeP_NormalizedDLT: The number of 2D points (" << points2D.size()
<< ") must match the number of 3D points (" << points3D.size() << ")!" << std::endl;
throw std::runtime_error(ss.str());
}
// std::cout << "ComputeP_NormalizedDLT: 2D points: " << std::endl;
// for(Point2DVector::const_iterator iter = points2D.begin(); iter != points2D.end(); ++iter)
// {
// Point2DVector::value_type p = *iter;
// std::cout << p[0] << " " << p[1] << std::endl;
// }
// std::cout << "ComputeP_NormalizedDLT: 3D points: " << std::endl;
// for(Point3DVector::const_iterator iter = points3D.begin(); iter != points3D.end(); ++iter)
// {
// Point3DVector::value_type p = *iter;
// std::cout << p[0] << " " << p[1] << " " << p[2] << std::endl;
// }
Eigen::MatrixXd similarityTransform2D = ComputeNormalizationTransform<Eigen::Vector2d>(points2D);
Eigen::MatrixXd similarityTransform3D = ComputeNormalizationTransform<Eigen::Vector3d>(points3D);
// std::cout << "Computed similarity transforms:" << std::endl;
// std::cout << "similarityTransform2D: " << similarityTransform2D << std::endl;
// std::cout << "similarityTransform3D: " << similarityTransform3D << std::endl;
// The (, Eigen::VectorXd()) below are only required when using gnu++0x, it seems to be a bug in Eigen
Point2DVector transformed2DPoints(numberOfPoints, Eigen::Vector2d());
Point3DVector transformed3DPoints(numberOfPoints, Eigen::Vector3d());
for(unsigned int i = 0; i < numberOfPoints; ++i)
{
Eigen::VectorXd point2Dhomogeneous = points2D[i].homogeneous();
Eigen::VectorXd point2Dtransformed = similarityTransform2D * point2Dhomogeneous;
transformed2DPoints[i] = point2Dtransformed.hnormalized();
Eigen::VectorXd point3Dhomogeneous = points3D[i].homogeneous();
Eigen::VectorXd point3Dtransformed = similarityTransform3D * point3Dhomogeneous;
transformed3DPoints[i] = point3Dtransformed.hnormalized();
//transformed2DPoints[i] = (similarityTransform2D * points2D[i].homogeneous()).hnormalized();
//transformed3DPoints[i] = (similarityTransform3D * points3D[i].homogeneous()).hnormalized();
}
// std::cout << "Transformed points." << std::endl;
// Compute the Camera Projection Matrix
Eigen::MatrixXd A(2*numberOfPoints,12);
for(unsigned int i = 0; i < numberOfPoints; ++i)
{
// First row/equation from the ith correspondence
unsigned int row = 2*i;
A(row, 0) = 0;
A(row, 1) = 0;
A(row, 2) = 0;
A(row, 3) = 0;
A(row, 4) = transformed3DPoints[i](0);
A(row, 5) = transformed3DPoints[i](1);
A(row, 6) = transformed3DPoints[i](2);
A(row, 7) = 1;
A(row, 8) = -transformed2DPoints[i](1) * transformed3DPoints[i](0);
A(row, 9) = -transformed2DPoints[i](1) * transformed3DPoints[i](1);
A(row, 10) = -transformed2DPoints[i](1) * transformed3DPoints[i](2);
A(row, 11) = -transformed2DPoints[i](1);
// Second row/equation from the ith correspondence
row = 2*i+1;
A(row, 0) = transformed3DPoints[i](0);
A(row, 1) = transformed3DPoints[i](1);
A(row, 2) = transformed3DPoints[i](2);
A(row, 3) = 1;
A(row, 4) = 0;
A(row, 5) = 0;
A(row, 6) = 0;
A(row, 7) = 0;
A(row, 8) = -transformed2DPoints[i](0) * transformed3DPoints[i](0);
A(row, 9) = -transformed2DPoints[i](0) * transformed3DPoints[i](1);
A(row, 10) = -transformed2DPoints[i](0) * transformed3DPoints[i](2);
A(row, 11) = -transformed2DPoints[i](0);
}
// std::cout << "A: " << A << std::endl;
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::MatrixXd V = svd.matrixV();
Eigen::MatrixXd lastColumnOfV = V.col(11);
Eigen::MatrixXd P = Reshape(lastColumnOfV, 3, 4);
// Denormalization
P = similarityTransform2D.inverse()*P*similarityTransform3D; // 3x3 * 3x4 * 4x4 = 4x4
//.........这里部分代码省略.........
示例13: getBathy
/**
* Generates a bathymetryGrid by reading data from a local file. Results are
* dumped into topographyGrid.
* @param topographyGrid A pointer to a zero-initialized Grid of size
* numRows x numCols.
* @param inputFile The relative path to the topography file you wish to use.
* @param inputFileType Use 'netcdf' if your file is in netcdf format. Use
* 'asc' if the file is a matrix of ascii values in the GIS asc format.
* @param startRow The row to start reading data from.
* @param startCol The col to start reading data from.
* @param numRows The desired number of rows of data to read.
* @param numCols The desired number of cols of data to read.
* @param seriesName If inputFileType was set to 'netcdf', this should be set
* to the name of the series you wish to use.
* @param timestamp A timestamp value used for error reporting.
*/
void getBathy(Grid* topographyGrid, std::string inputFile,
std::string inputFileType, size_t startRow, size_t startCol,
size_t numRows, size_t numCols, std::string seriesName,
std::string timestamp) {
// This will be the netCDF ID for the file and data variable.
Eigen::MatrixXd temp;
int ncid, varid, retval = -100;
// NetCDF
if (inputFileType.compare("netcdf") == 0) {
// Data will be read in column major, so set up a matrix of inverse
// size to recieve it.
temp.resize(numCols, numRows);
// Open the file. NC_NOWRITE tells netCDF we want read-only access to
// the file.
if ((retval = nc_open(inputFile.c_str(), NC_NOWRITE, &ncid))) {
printError("ERROR: Cant open NetCDF File. Invalid inputFile path.",
retval, timestamp);
}
// Get the varid of the data variable, based on its name.
if ((retval = nc_inq_varid(ncid, seriesName.c_str(), &varid))) {
printError("ERROR: Can't access variable id. Invalid seriesName.",
retval, timestamp);
}
// Read the data.
try {
// for whatever reason, this is in column, row order.
static size_t start[] = {startRow, startCol};
static size_t range[] = {numRows, numCols};
retval = nc_get_vara_double(ncid, varid, start, range,
temp.data());
// TODO(Greg) Figure out a way to read data in row wise to avoid
// this transposition.
topographyGrid->data.block(border, border, numRows, numCols) =
temp.transpose().block(0, 0, numRows, numCols);
}
catch (int i) {
printError("ERROR: Error reading data. Invalid file format.",
retval, timestamp);
}
// Close the file, freeing all resources.
if ((retval = nc_close(ncid))) {
printError("ERROR: Error closing the file.", retval, timestamp);
}
} else if (inputFileType.compare("asc") == 0) {
// ASC
temp.resize(numRows, numCols);
std::ifstream input(inputFile);
int null = 0;
size_t numHeaderLines = 5,
rowsLine = 1,
colsLine = 0,
nullLine = 5,
cursor = 0,
rows = 0,
cols = 0,
startRowIndex = startRow+numHeaderLines,
endRowIndex = startRowIndex+numRows,
i = 0,
j = 0;
std::string line = "";
std::vector<std::string> vLine;
if (input.is_open()) {
for (cursor = 0; cursor < endRowIndex; cursor ++) {
getline(input, line);
if (cursor <= numHeaderLines) {
// Get the number of columns in the file
if (cursor == colsLine) {
vLine = split(&line, ' ');
if (!silent) {
std::cout << "\nAvailable Cols: " <<
vLine[vLine.size()-1];
}
cols = stoi(vLine[vLine.size() - 1]);
if (cols < startCol + numCols) {
std::cout << "\nERROR, requested bathymetry " <<
" grid column coordinates are out of" <<
" bounds.\n";
exit(1);
}
} else if (cursor == rowsLine) {
//.........这里部分代码省略.........
示例14: simulatetopographyGrid
/**
* Generates an artificial topographyGrid of size numRows x numCols if no
* topographic data is available. Results are dumped into topographyGrid.
* @param topographyGrid A pointer to a zero-initialized Grid of size
* numRows x numCols.
* @param numRows The desired number of non-border rows in the resulting matrix.
* @param numCols The desired number of non-border cols in the resulting matrix.
*/
void simulatetopographyGrid(Grid* topographyGrid, int numRows, int numCols) {
Eigen::VectorXd refx = refx.LinSpaced(numCols, -2*M_PI, 2*M_PI);
Eigen::VectorXd refy = refx.LinSpaced(numRows, -2*M_PI, 2*M_PI);
Eigen::MatrixXd X = refx.replicate(1, numRows);
X.transposeInPlace();
Eigen::MatrixXd Y = refy.replicate(1, numCols);
// Eigen can only deal with two matrices at a time,
// so split the computation:
// topographyGrid = sin(X) * sin(Y) * abs(X) * abs(Y) -pi
Eigen::MatrixXd absXY = X.cwiseAbs().cwiseProduct(Y.cwiseAbs());
Eigen::MatrixXd sins = X.array().sin().cwiseProduct(Y.array().sin());
Eigen::MatrixXd temp;
temp.resize(numRows, numCols);
temp = absXY.cwiseProduct(sins);
// All this work to create a matrix of pi...
Eigen::MatrixXd pi;
pi.resize(numRows, numCols);
pi.setConstant(M_PI);
temp = temp - pi;
// And the final result.
topographyGrid->data.block(border, border, numRows, numCols) =
temp.block(0, 0, numRows, numCols);
// Ignore positive values.
topographyGrid->data =
topographyGrid->data.unaryExpr(std::ptr_fun(validateDepth));
topographyGrid->clearNA();
}
示例15: measurementUpdate
void CDKF::measurementUpdate(const ros::Time& prev_stamp,
const ros::Time& current_stamp,
const double image_angular_velocity,
const IMUList& imu_rotations,
const bool calc_offset) {
// convert tracked points to measurement
Eigen::VectorXd real_measurement(kMeasurementSize);
accessM(real_measurement, MEASURED_TIMESTAMP).array() =
(current_stamp - zero_timestamp_).toSec();
accessM(real_measurement, ANGULAR_VELOCITY).array() = image_angular_velocity;
if (verbose_) {
ROS_INFO_STREAM("Measured Values: \n" << real_measurement.transpose());
}
// create sigma points
MeasurementSigmaPoints sigma_points(
state_, cov_, measurement_noise_sd_, CDKF::stateToMeasurementEstimate,
imu_rotations, zero_timestamp_, calc_offset);
// get mean and cov
Eigen::VectorXd predicted_measurement;
sigma_points.calcEstimatedMean(&predicted_measurement);
Eigen::MatrixXd innovation;
sigma_points.calcEstimatedCov(&innovation);
if (verbose_) {
ROS_INFO_STREAM("Predicted Measurements: \n"
<< predicted_measurement.transpose());
}
// calc mah distance
Eigen::VectorXd diff = real_measurement - predicted_measurement;
double mah_dist = std::sqrt(diff.transpose() * innovation.inverse() * diff);
if (mah_dist > mah_threshold_) {
ROS_WARN("Outlier detected, measurement rejected");
return;
}
Eigen::MatrixXd cross_cov;
sigma_points.calcEstimatedCrossCov(&cross_cov);
Eigen::MatrixXd gain = cross_cov * innovation.inverse();
const Eigen::VectorXd state_diff =
gain * (real_measurement - predicted_measurement);
state_ += state_diff;
cov_ -= gain * innovation * gain.transpose();
if (verbose_) {
ROS_INFO_STREAM("Updated State: \n" << state_.transpose());
ROS_INFO_STREAM("Updated Cov: \n" << cov_);
}
// guard against precision issues
constexpr double kMaxTime = 10000.0;
if (accessS(state_, STATE_TIMESTAMP)[0] > kMaxTime) {
rezeroTimestamps(current_stamp);
}
}