本文整理汇总了C++中std::iter_swap方法的典型用法代码示例。如果您正苦于以下问题:C++ std::iter_swap方法的具体用法?C++ std::iter_swap怎么用?C++ std::iter_swap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类std
的用法示例。
在下文中一共展示了std::iter_swap方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: test_some
BidirectionalIterator
test_some(BidirectionalIterator first, BidirectionalIterator last)
{
BidirectionalIterator current = first;
BidirectionalIterator start_of_completed = last;
while (current != start_of_completed) {
// Check if we have found a completed request.
if (optional<status> result = current->test()) {
using std::iter_swap;
// We're expanding the set of completed requests
--start_of_completed;
// Swap the request we just completed with the last request that
// has not yet been tested.
iter_swap(current, start_of_completed);
continue;
}
// Move to the next request.
++current;
}
return start_of_completed;
}
示例2: shuffle
//shuffles the deck by switching cards at each position
void MasterPile::shuffle(){
vector<Card>::iterator it = pile.begin();
srand(time(NULL));
while(it != pile.end()){
int randomValue = rand() % this->getSize();
iter_swap(it, pile.begin() + randomValue);
it++;
}
}
示例3: uniquify
template<class It> It uniquify(It begin, It const end)
{
std::vector<It> v;
v.reserve(static_cast<size_t>(std::distance(begin, end)));
for (It i = begin; i != end; ++i)
{ v.push_back(i); }
std::sort(v.begin(), v.end(), target_less());
v.erase(std::unique(v.begin(), v.end(), target_equal()), v.end());
std::sort(v.begin(), v.end());
size_t j = 0;
for (It i = begin; i != end && j != v.size(); ++i)
{
if (i == v[j])
{
using std::iter_swap; iter_swap(i, begin);
++j;
++begin;
}
}
return begin;
}
示例4: optimize
void file_storage::optimize(int pad_file_limit)
{
// the main purpuse of padding is to optimize disk
// I/O. This is a conservative memory page size assumption
int alignment = 8*1024;
// it doesn't make any sense to pad files that
// are smaller than one piece
if (pad_file_limit >= 0 && pad_file_limit < alignment)
pad_file_limit = alignment;
// put the largest file at the front, to make sure
// it's aligned
std::vector<file_entry>::iterator i = std::max_element(m_files.begin(), m_files.end()
, boost::bind(&file_entry::size, _1) < boost::bind(&file_entry::size, _2));
using std::iter_swap;
iter_swap(i, m_files.begin());
size_type off = 0;
int padding_file = 0;
for (std::vector<file_entry>::iterator i = m_files.begin();
i != m_files.end(); ++i)
{
if (pad_file_limit >= 0
&& (off & (alignment-1)) != 0
&& i->size > pad_file_limit
&& i->pad_file == false)
{
// if we have pad files enabled, and this file is
// not piece-aligned and the file size exceeds the
// limit, and it's not a padding file itself.
// so add a padding file in front of it
int pad_size = alignment - (off & (alignment-1));
// find the largest file that fits in pad_size
std::vector<file_entry>::iterator best_match = m_files.end();
for (std::vector<file_entry>::iterator j = i+1; j < m_files.end(); ++j)
{
if (j->size > pad_size) continue;
if (best_match == m_files.end() || j->size > best_match->size)
best_match = j;
}
if (best_match != m_files.end())
{
// we found one
// We cannot have found i, because i->size > pad_file_limit
// which is forced to be no less than alignment. We only
// look for files <= pad_size, which never is greater than
// alignment
TORRENT_ASSERT(best_match != i);
file_entry e = *best_match;
m_files.erase(best_match);
i = m_files.insert(i, e);
i->offset = off;
off += i->size;
continue;
}
// we could not find a file that fits in pad_size
// add a padding file
// note that i will be set to point to the
// new pad file. Once we're done adding it, we need
// to increment i to point to the current file again
file_entry e;
i = m_files.insert(i, e);
i->size = pad_size;
i->offset = off;
i->file_base = 0;
char name[10];
std::sprintf(name, "%d", padding_file);
i->path = *(i+1)->path.begin();
i->path /= "_____padding_file_";
i->path /= name;
i->pad_file = true;
off += pad_size;
++padding_file;
// skip the pad file we just added and point
// at the current file again
++i;
}
i->offset = off;
off += i->size;
}
m_total_size = off;
}
示例5: wait_some
BidirectionalIterator
wait_some(BidirectionalIterator first, BidirectionalIterator last)
{
using std::advance;
if (first == last)
return first;
typedef typename std::iterator_traits<BidirectionalIterator>::difference_type
difference_type;
bool all_trivial_requests = true;
difference_type n = 0;
BidirectionalIterator current = first;
BidirectionalIterator start_of_completed = last;
while (true) {
// Check if we have found a completed request.
if (optional<status> result = current->test()) {
using std::iter_swap;
// We're expanding the set of completed requests
--start_of_completed;
// If we have hit the end of the list of pending requests, we're
// done.
if (current == start_of_completed)
return start_of_completed;
// Swap the request we just completed with the last request that
// has not yet been tested.
iter_swap(current, start_of_completed);
continue;
}
// Check if this request (and all others before it) are "trivial"
// requests, e.g., they can be represented with a single
// MPI_Request.
all_trivial_requests =
all_trivial_requests
&& !current->m_handler
&& current->m_requests[1] == MPI_REQUEST_NULL;
// Move to the next request.
++n;
if (++current == start_of_completed) {
// If we have satisfied some requests, we're done.
if (start_of_completed != last)
return start_of_completed;
// We have reached the end of the list. If all requests thus far
// have been trivial, we can call MPI_Waitsome directly, because
// it may be more efficient than our busy-wait semantics.
if (all_trivial_requests) {
std::vector<MPI_Request> requests;
std::vector<int> indices(n);
requests.reserve(n);
for (current = first; current != last; ++current)
requests.push_back(current->m_requests[0]);
// Let MPI wait until some of these operations complete.
int num_completed;
BOOST_MPI_CHECK_RESULT(MPI_Waitsome,
(n, &requests[0], &num_completed, &indices[0],
MPI_STATUSES_IGNORE));
// Translate the index-based result of MPI_Waitsome into a
// partitioning on the requests.
int current_offset = 0;
current = first;
for (int index = 0; index < num_completed; ++index) {
using std::iter_swap;
// Move "current" to the request object at this index
advance(current, indices[index] - current_offset);
current_offset = indices[index];
// Finish up the request and swap it into the "completed
// requests" partition.
current->m_requests[0] = requests[indices[index]];
--start_of_completed;
iter_swap(current, start_of_completed);
}
// We have satisfied some requests, so we are done.
return start_of_completed;
}
// There are some nontrivial requests, so we must continue our
// busy waiting loop.
n = 0;
current = first;
}
}
// We cannot ever get here
BOOST_ASSERT(false);
}