本文整理汇总了C++中std::exp方法的典型用法代码示例。如果您正苦于以下问题:C++ std::exp方法的具体用法?C++ std::exp怎么用?C++ std::exp使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类std
的用法示例。
在下文中一共展示了std::exp方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: TEST
TEST(AgradFwdLog1pExp,Fvar) {
using stan::agrad::fvar;
using stan::math::log1p_exp;
using std::exp;
fvar<double> x(0.5,1.0);
fvar<double> y(1.0,2.0);
fvar<double> z(2.0,3.0);
fvar<double> a = log1p_exp(x);
EXPECT_FLOAT_EQ(log1p_exp(0.5), a.val_);
EXPECT_FLOAT_EQ(exp(0.5) / (1 + exp(0.5)), a.d_);
fvar<double> b = log1p_exp(y);
EXPECT_FLOAT_EQ(log1p_exp(1.0), b.val_);
EXPECT_FLOAT_EQ(2.0 * exp(1.0) / (1 + exp(1.0)), b.d_);
fvar<double> a2 = log(1+exp(x));
EXPECT_FLOAT_EQ(a.d_, a2.d_);
fvar<double> b2 = log(1+exp(y));
EXPECT_FLOAT_EQ(b.d_, b2.d_);
}
示例2: TEST
TEST(AgradFwdLogDiffExp,Double_FvarFvarVar_1stDeriv) {
using stan::agrad::fvar;
using stan::agrad::var;
using stan::math::log_diff_exp;
using std::exp;
double x(9.0);
fvar<fvar<var> > y;
y.val_.val_ = 6.0;
y.d_.val_ = 1.0;
fvar<fvar<var> > a = log_diff_exp(x,y);
EXPECT_FLOAT_EQ(log_diff_exp(9.0,6.0), a.val_.val_.val());
EXPECT_FLOAT_EQ(0, a.val_.d_.val());
EXPECT_FLOAT_EQ(-exp(6.0) / (exp(9.0) - exp(6.0)), a.d_.val_.val());
EXPECT_FLOAT_EQ(0, a.d_.d_.val());
AVEC p = createAVEC(y.val_.val_);
VEC g;
a.val_.val_.grad(p,g);
EXPECT_FLOAT_EQ(-exp(6.0) / (exp(9.0) - exp(6.0)), g[0]);
}
示例3: TEST
TEST(AgradFvar, log1m_inv_logit){
using stan::agrad::fvar;
using stan::math::log1m_inv_logit;
using std::exp;
fvar<double> x(0.5);
fvar<double> y(-1.0);
fvar<double> z(0.0);
x.d_ = 1.0;
y.d_ = 2.0;
z.d_ = 3.0;
fvar<double> a = log1m_inv_logit(x);
EXPECT_FLOAT_EQ(log1m_inv_logit(0.5), a.val_);
EXPECT_FLOAT_EQ(-1.0 * exp(0.5) / (1 + exp(0.5)), a.d_);
fvar<double> b = log1m_inv_logit(y);
EXPECT_FLOAT_EQ(log1m_inv_logit(-1.0), b.val_);
EXPECT_FLOAT_EQ(-2.0 * exp(-1.0) / (1 + exp(-1.0)), b.d_);
fvar<double> c = log1m_inv_logit(z);
EXPECT_FLOAT_EQ(log1m_inv_logit(0.0), c.val_);
EXPECT_FLOAT_EQ(-3.0 * exp(0.0) / (1 + exp(0.0)), c.d_);
}
示例4: test_exp
void test_exp(const int fuzzy_bits)
{
// Use at least 8 resolution bits.
// Use at least 7 range bits.
BOOST_STATIC_ASSERT(-FixedPointType::resolution >= 8);
BOOST_STATIC_ASSERT( FixedPointType::range >= 7);
const FixedPointType a1(+1L ); const FloatPointType b1(+1L );
const FixedPointType a2(+2L ); const FloatPointType b2(+2L );
const FixedPointType a3(+4.375L); const FloatPointType b3(+4.375L);
const FixedPointType a4(+1.125L); const FloatPointType b4(+1.125L);
const FixedPointType a5(-1.125L); const FloatPointType b5(-1.125L);
const FixedPointType a6(+0.875L); const FloatPointType b6(+0.875L);
const FixedPointType a7(FixedPointType( 1) / 3); const FloatPointType b7(FloatPointType( 1) / 3);
const FixedPointType a8(FixedPointType(11) / 10); const FloatPointType b8(FloatPointType(11) / 10);
const FixedPointType a9(boost::math::constants::phi<FixedPointType>()); const FloatPointType b9(boost::math::constants::phi<FloatPointType>());
using std::exp;
BOOST_CHECK_CLOSE_FRACTION(exp(a1), FixedPointType(exp(b1)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a2), FixedPointType(exp(b2)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a3), FixedPointType(exp(b3)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a4), FixedPointType(exp(b4)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a5), FixedPointType(exp(b5)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a6), FixedPointType(exp(b6)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a7), FixedPointType(exp(b7)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a8), FixedPointType(exp(b8)), tolerance_maker<FixedPointType>(fuzzy_bits));
BOOST_CHECK_CLOSE_FRACTION(exp(a9), FixedPointType(exp(b9)), tolerance_maker<FixedPointType>(fuzzy_bits));
}
示例5: expm1
inline fvar<T> expm1(const fvar<T>& x) {
using std::exp;
return fvar<T>(expm1(x.val_), x.d_ * exp(x.val_));
}
示例6: test_cv_vib
int test_cv_vib()
{
using std::exp;
const Scalar Mm_N = 14.008e-3; //in SI kg/mol
const Scalar Mm_O = 16e-3; //in SI kg/mol
const Scalar Mm_N2 = 2.L * Mm_N; //in SI kg/mol
const Scalar Mm_O2 = 2.L * Mm_O; //in SI kg/mol
const Scalar Mm_NO = Mm_O + Mm_N; //in SI kg/mol
std::vector<std::string> species_str_list;
const unsigned int n_species = 5;
species_str_list.reserve(n_species);
species_str_list.push_back( "N2" );
species_str_list.push_back( "O2" );
species_str_list.push_back( "N" );
species_str_list.push_back( "O" );
species_str_list.push_back( "NO" );
Antioch::ChemicalMixture<Scalar> chem_mixture( species_str_list );
// Can we instantiate it?
Antioch::StatMechThermodynamics<Scalar> sm_thermo( chem_mixture );
// Mass fractions
std::vector<Scalar> mass_fractions( 5, 0.2 );
mass_fractions[0] = 0.5;
mass_fractions[1] = 0.2;
mass_fractions[2] = 0.1;
mass_fractions[3] = 0.1;
mass_fractions[4] = 0.1;
const Scalar R_N2 = Antioch::Constants::R_universal<Scalar>() / Mm_N2;
const Scalar R_O2 = Antioch::Constants::R_universal<Scalar>() / Mm_O2;
const Scalar R_NO = Antioch::Constants::R_universal<Scalar>() / Mm_NO;
const Scalar th0_N2 = 3.39500e+03; // degeneracy = 1
const Scalar th0_O2 = 2.23900e+03; // degeneracy = 1
const Scalar th0_NO = 2.81700e+03; // degeneracy = 1
// Tv
const Scalar Tv = 1000.0;
const Scalar tol = std::numeric_limits<Scalar>::epsilon() * 2;
const Scalar ztol = std::numeric_limits<Scalar>::epsilon();
int return_flag = 0;
Scalar cv_vib_mix = 0.0;
// N2
{
Scalar cv_vib_N2 = sm_thermo.cv_vib (0, Tv);
const Scalar expv = exp(th0_N2/Tv);
const Scalar expvmi = expv - Scalar(1.0);
Scalar cv_vib_N2_true = R_N2*th0_N2*th0_N2*expv/expvmi/expvmi/Tv/Tv;
if( !test_relative(cv_vib_N2, cv_vib_N2_true, tol) )
{
std::cerr << std::scientific << std::setprecision(20);
std::cerr << "Error: Mismatch in cv_vib for N2."
<< "\n Expected = " << cv_vib_N2_true
<< "\n Computed = " << cv_vib_N2
<< "\n Diff = " << cv_vib_N2_true - cv_vib_N2
<< std::endl;
return_flag += 1;
}
cv_vib_mix += mass_fractions[0]*cv_vib_N2_true;
}
// O2
{
Scalar cv_vib_O2 = sm_thermo.cv_vib (1, Tv);
const Scalar expv = exp(th0_O2/Tv);
const Scalar expvmi = expv - Scalar(1.0);
Scalar cv_vib_O2_true = R_O2*th0_O2*th0_O2*expv/expvmi/expvmi/Tv/Tv;
if( !test_relative(cv_vib_O2, cv_vib_O2_true, tol) )
{
std::cerr << std::scientific << std::setprecision(20);
std::cerr << "Error: Mismatch in cv_vib for O2."
<< "\n Expected = " << cv_vib_O2_true
<< "\n Computed = " << cv_vib_O2
<< "\n Diff = " << cv_vib_O2_true - cv_vib_O2
<< std::endl;
return_flag += 1;
}
cv_vib_mix += mass_fractions[1]*cv_vib_O2_true;
}
// O
{
Scalar cv_vib_O = sm_thermo.cv_vib (2, Tv);
if( !test_zero(cv_vib_O, ztol) )
{
//.........这里部分代码省略.........
示例7: skew_normal_log
typename return_type<T_y, T_loc, T_scale, T_shape>::type
skew_normal_log(const T_y& y, const T_loc& mu, const T_scale& sigma,
const T_shape& alpha) {
static const char* function("skew_normal_log");
typedef typename stan::partials_return_type<T_y, T_loc,
T_scale, T_shape>::type
T_partials_return;
using std::log;
using stan::is_constant_struct;
using std::exp;
if (!(stan::length(y)
&& stan::length(mu)
&& stan::length(sigma)
&& stan::length(alpha)))
return 0.0;
T_partials_return logp(0.0);
check_not_nan(function, "Random variable", y);
check_finite(function, "Location parameter", mu);
check_finite(function, "Shape parameter", alpha);
check_positive(function, "Scale parameter", sigma);
check_consistent_sizes(function,
"Random variable", y,
"Location parameter", mu,
"Scale parameter", sigma,
"Shape paramter", alpha);
if (!include_summand<propto, T_y, T_loc, T_scale, T_shape>::value)
return 0.0;
OperandsAndPartials<T_y, T_loc, T_scale, T_shape>
operands_and_partials(y, mu, sigma, alpha);
using std::log;
VectorView<const T_y> y_vec(y);
VectorView<const T_loc> mu_vec(mu);
VectorView<const T_scale> sigma_vec(sigma);
VectorView<const T_shape> alpha_vec(alpha);
size_t N = max_size(y, mu, sigma, alpha);
VectorBuilder<true, T_partials_return, T_scale> inv_sigma(length(sigma));
VectorBuilder<include_summand<propto, T_scale>::value,
T_partials_return, T_scale> log_sigma(length(sigma));
for (size_t i = 0; i < length(sigma); i++) {
inv_sigma[i] = 1.0 / value_of(sigma_vec[i]);
if (include_summand<propto, T_scale>::value)
log_sigma[i] = log(value_of(sigma_vec[i]));
}
for (size_t n = 0; n < N; n++) {
const T_partials_return y_dbl = value_of(y_vec[n]);
const T_partials_return mu_dbl = value_of(mu_vec[n]);
const T_partials_return sigma_dbl = value_of(sigma_vec[n]);
const T_partials_return alpha_dbl = value_of(alpha_vec[n]);
const T_partials_return y_minus_mu_over_sigma
= (y_dbl - mu_dbl) * inv_sigma[n];
const double pi_dbl = pi();
if (include_summand<propto>::value)
logp -= 0.5 * log(2.0 * pi_dbl);
if (include_summand<propto, T_scale>::value)
logp -= log(sigma_dbl);
if (include_summand<propto, T_y, T_loc, T_scale>::value)
logp -= y_minus_mu_over_sigma * y_minus_mu_over_sigma / 2.0;
if (include_summand<propto, T_y, T_loc, T_scale, T_shape>::value)
logp += log(erfc(-alpha_dbl * y_minus_mu_over_sigma
/ std::sqrt(2.0)));
T_partials_return deriv_logerf
= 2.0 / std::sqrt(pi_dbl)
* exp(-alpha_dbl * y_minus_mu_over_sigma / std::sqrt(2.0)
* alpha_dbl * y_minus_mu_over_sigma / std::sqrt(2.0))
/ (1 + erf(alpha_dbl * y_minus_mu_over_sigma
/ std::sqrt(2.0)));
if (!is_constant_struct<T_y>::value)
operands_and_partials.d_x1[n]
+= -y_minus_mu_over_sigma / sigma_dbl
+ deriv_logerf * alpha_dbl / (sigma_dbl * std::sqrt(2.0));
if (!is_constant_struct<T_loc>::value)
operands_and_partials.d_x2[n]
+= y_minus_mu_over_sigma / sigma_dbl
+ deriv_logerf * -alpha_dbl / (sigma_dbl * std::sqrt(2.0));
if (!is_constant_struct<T_scale>::value)
operands_and_partials.d_x3[n]
+= -1.0 / sigma_dbl
+ y_minus_mu_over_sigma * y_minus_mu_over_sigma / sigma_dbl
- deriv_logerf * y_minus_mu_over_sigma * alpha_dbl
/ (sigma_dbl * std::sqrt(2.0));
if (!is_constant_struct<T_shape>::value)
operands_and_partials.d_x4[n]
+= deriv_logerf * y_minus_mu_over_sigma / std::sqrt(2.0);
}
return operands_and_partials.value(logp);
}
示例8: beta_cdf_log
typename return_type<T_y, T_scale_succ, T_scale_fail>::type
beta_cdf_log(const T_y& y, const T_scale_succ& alpha,
const T_scale_fail& beta) {
typedef typename stan::partials_return_type<T_y, T_scale_succ,
T_scale_fail>::type
T_partials_return;
// Size checks
if ( !( stan::length(y) && stan::length(alpha)
&& stan::length(beta) ) )
return 0.0;
// Error checks
static const char* function("stan::math::beta_cdf");
using stan::math::check_positive_finite;
using stan::math::check_not_nan;
using stan::math::check_nonnegative;
using stan::math::check_less_or_equal;
using boost::math::tools::promote_args;
using stan::math::check_consistent_sizes;
using stan::math::value_of;
T_partials_return cdf_log(0.0);
check_positive_finite(function, "First shape parameter", alpha);
check_positive_finite(function, "Second shape parameter", beta);
check_not_nan(function, "Random variable", y);
check_nonnegative(function, "Random variable", y);
check_less_or_equal(function, "Random variable", y, 1);
check_consistent_sizes(function,
"Random variable", y,
"First shape parameter", alpha,
"Second shape parameter", beta);
// Wrap arguments in vectors
VectorView<const T_y> y_vec(y);
VectorView<const T_scale_succ> alpha_vec(alpha);
VectorView<const T_scale_fail> beta_vec(beta);
size_t N = max_size(y, alpha, beta);
OperandsAndPartials<T_y, T_scale_succ, T_scale_fail>
operands_and_partials(y, alpha, beta);
// Compute CDF and its gradients
using stan::math::inc_beta;
using stan::math::digamma;
using stan::math::lbeta;
using std::pow;
using std::exp;
using std::log;
using std::exp;
// Cache a few expensive function calls if alpha or beta is a parameter
VectorBuilder<contains_nonconstant_struct<T_scale_succ,
T_scale_fail>::value,
T_partials_return, T_scale_succ, T_scale_fail>
digamma_alpha_vec(max_size(alpha, beta));
VectorBuilder<contains_nonconstant_struct<T_scale_succ,
T_scale_fail>::value,
T_partials_return, T_scale_succ, T_scale_fail>
digamma_beta_vec(max_size(alpha, beta));
VectorBuilder<contains_nonconstant_struct<T_scale_succ,
T_scale_fail>::value,
T_partials_return, T_scale_succ, T_scale_fail>
digamma_sum_vec(max_size(alpha, beta));
if (contains_nonconstant_struct<T_scale_succ, T_scale_fail>::value) {
for (size_t i = 0; i < N; i++) {
const T_partials_return alpha_dbl = value_of(alpha_vec[i]);
const T_partials_return beta_dbl = value_of(beta_vec[i]);
digamma_alpha_vec[i] = digamma(alpha_dbl);
digamma_beta_vec[i] = digamma(beta_dbl);
digamma_sum_vec[i] = digamma(alpha_dbl + beta_dbl);
}
}
// Compute vectorized CDFLog and gradient
for (size_t n = 0; n < N; n++) {
// Pull out values
const T_partials_return y_dbl = value_of(y_vec[n]);
const T_partials_return alpha_dbl = value_of(alpha_vec[n]);
const T_partials_return beta_dbl = value_of(beta_vec[n]);
const T_partials_return betafunc_dbl = exp(lbeta(alpha_dbl, beta_dbl));
// Compute
const T_partials_return Pn = inc_beta(alpha_dbl, beta_dbl, y_dbl);
cdf_log += log(Pn);
if (!is_constant_struct<T_y>::value)
operands_and_partials.d_x1[n] += pow(1-y_dbl, beta_dbl-1)
* pow(y_dbl, alpha_dbl-1) / betafunc_dbl / Pn;
T_partials_return g1 = 0;
T_partials_return g2 = 0;
if (contains_nonconstant_struct<T_scale_succ, T_scale_fail>::value) {
//.........这里部分代码省略.........
示例9: exp
DualNumber<T> exp(DualNumber<T> x)
{
using std::exp;
return DualNumber<T>(exp(x.first), x.second * exp(x.first));
}
示例10: binomial_cdf
typename return_type<T_prob>::type
binomial_cdf(const T_n& n, const T_N& N, const T_prob& theta) {
static const char* function("stan::prob::binomial_cdf");
typedef typename stan::partials_return_type<T_n,T_N,T_prob>::type
T_partials_return;
using stan::math::check_finite;
using stan::math::check_bounded;
using stan::math::check_nonnegative;
using stan::math::value_of;
using stan::math::check_consistent_sizes;
using stan::prob::include_summand;
// Ensure non-zero arguments lenghts
if (!(stan::length(n) && stan::length(N) && stan::length(theta)))
return 1.0;
T_partials_return P(1.0);
// Validate arguments
check_nonnegative(function, "Population size parameter", N);
check_finite(function, "Probability parameter", theta);
check_bounded(function, "Probability parameter", theta, 0.0, 1.0);
check_consistent_sizes(function,
"Successes variable", n,
"Population size parameter", N,
"Probability parameter", theta);
// Wrap arguments in vector views
VectorView<const T_n> n_vec(n);
VectorView<const T_N> N_vec(N);
VectorView<const T_prob> theta_vec(theta);
size_t size = max_size(n, N, theta);
// Compute vectorized CDF and gradient
using stan::math::value_of;
using stan::math::inc_beta;
using stan::math::lbeta;
using std::exp;
using std::pow;
agrad::OperandsAndPartials<T_prob> operands_and_partials(theta);
// Explicit return for extreme values
// The gradients are technically ill-defined, but treated as zero
for (size_t i = 0; i < stan::length(n); i++) {
if (value_of(n_vec[i]) < 0)
return operands_and_partials.to_var(0.0,theta);
}
for (size_t i = 0; i < size; i++) {
// Explicit results for extreme values
// The gradients are technically ill-defined, but treated as zero
if (value_of(n_vec[i]) >= value_of(N_vec[i])) {
continue;
}
const T_partials_return n_dbl = value_of(n_vec[i]);
const T_partials_return N_dbl = value_of(N_vec[i]);
const T_partials_return theta_dbl = value_of(theta_vec[i]);
const T_partials_return betafunc = exp(lbeta(N_dbl-n_dbl,n_dbl+1));
const T_partials_return Pi = inc_beta(N_dbl - n_dbl, n_dbl + 1,
1 - theta_dbl);
P *= Pi;
if (!is_constant_struct<T_prob>::value)
operands_and_partials.d_x1[i] -= pow(theta_dbl,n_dbl)
* pow(1-theta_dbl,N_dbl-n_dbl-1) / betafunc / Pi;
}
if (!is_constant_struct<T_prob>::value) {
for(size_t i = 0; i < stan::length(theta); ++i)
operands_and_partials.d_x1[i] *= P;
}
return operands_and_partials.to_var(P,theta);
}
示例11: inv_chi_square_cdf_log
typename return_type<T_y, T_dof>::type
inv_chi_square_cdf_log(const T_y& y, const T_dof& nu) {
typedef typename stan::partials_return_type<T_y, T_dof>::type
T_partials_return;
// Size checks
if ( !( stan::length(y) && stan::length(nu) ) ) return 0.0;
// Error checks
static const char* function("stan::math::inv_chi_square_cdf_log");
using stan::math::check_positive_finite;
using stan::math::check_not_nan;
using stan::math::check_consistent_sizes;
using stan::math::check_nonnegative;
using boost::math::tools::promote_args;
using stan::math::value_of;
using std::exp;
T_partials_return P(0.0);
check_positive_finite(function, "Degrees of freedom parameter", nu);
check_not_nan(function, "Random variable", y);
check_nonnegative(function, "Random variable", y);
check_consistent_sizes(function,
"Random variable", y,
"Degrees of freedom parameter", nu);
// Wrap arguments in vectors
VectorView<const T_y> y_vec(y);
VectorView<const T_dof> nu_vec(nu);
size_t N = max_size(y, nu);
OperandsAndPartials<T_y, T_dof> operands_and_partials(y, nu);
// Explicit return for extreme values
// The gradients are technically ill-defined, but treated as zero
for (size_t i = 0; i < stan::length(y); i++)
if (value_of(y_vec[i]) == 0)
return operands_and_partials.to_var(stan::math::negative_infinity(),
y, nu);
// Compute cdf_log and its gradients
using stan::math::gamma_q;
using stan::math::digamma;
using boost::math::tgamma;
using std::exp;
using std::pow;
using std::log;
// Cache a few expensive function calls if nu is a parameter
VectorBuilder<!is_constant_struct<T_dof>::value,
T_partials_return, T_dof> gamma_vec(stan::length(nu));
VectorBuilder<!is_constant_struct<T_dof>::value,
T_partials_return, T_dof> digamma_vec(stan::length(nu));
if (!is_constant_struct<T_dof>::value) {
for (size_t i = 0; i < stan::length(nu); i++) {
const T_partials_return nu_dbl = value_of(nu_vec[i]);
gamma_vec[i] = tgamma(0.5 * nu_dbl);
digamma_vec[i] = digamma(0.5 * nu_dbl);
}
}
// Compute vectorized cdf_log and gradient
for (size_t n = 0; n < N; n++) {
// Explicit results for extreme values
// The gradients are technically ill-defined, but treated as zero
if (value_of(y_vec[n]) == std::numeric_limits<double>::infinity()) {
continue;
}
// Pull out values
const T_partials_return y_dbl = value_of(y_vec[n]);
const T_partials_return y_inv_dbl = 1.0 / y_dbl;
const T_partials_return nu_dbl = value_of(nu_vec[n]);
// Compute
const T_partials_return Pn = gamma_q(0.5 * nu_dbl, 0.5 * y_inv_dbl);
P += log(Pn);
if (!is_constant_struct<T_y>::value)
operands_and_partials.d_x1[n] += 0.5 * y_inv_dbl * y_inv_dbl
* exp(-0.5*y_inv_dbl) * pow(0.5*y_inv_dbl, 0.5*nu_dbl-1)
/ tgamma(0.5*nu_dbl) / Pn;
if (!is_constant_struct<T_dof>::value)
operands_and_partials.d_x2[n]
+= 0.5 * stan::math::grad_reg_inc_gamma(0.5 * nu_dbl,
0.5 * y_inv_dbl,
gamma_vec[n],
digamma_vec[n]) / Pn;
}
return operands_and_partials.to_var(P, y, nu);
}
示例12: scaled_inv_chi_square_ccdf_log
typename return_type<T_y, T_dof, T_scale>::type
scaled_inv_chi_square_ccdf_log(const T_y& y, const T_dof& nu,
const T_scale& s) {
typedef typename stan::partials_return_type<T_y, T_dof, T_scale>::type
T_partials_return;
if (!(stan::length(y) && stan::length(nu) && stan::length(s)))
return 0.0;
static const char* function("scaled_inv_chi_square_ccdf_log");
using std::exp;
T_partials_return P(0.0);
check_not_nan(function, "Random variable", y);
check_nonnegative(function, "Random variable", y);
check_positive_finite(function, "Degrees of freedom parameter", nu);
check_positive_finite(function, "Scale parameter", s);
check_consistent_sizes(function,
"Random variable", y,
"Degrees of freedom parameter", nu,
"Scale parameter", s);
VectorView<const T_y> y_vec(y);
VectorView<const T_dof> nu_vec(nu);
VectorView<const T_scale> s_vec(s);
size_t N = max_size(y, nu, s);
OperandsAndPartials<T_y, T_dof, T_scale>
operands_and_partials(y, nu, s);
// Explicit return for extreme values
// The gradients are technically ill-defined, but treated as zero
for (size_t i = 0; i < stan::length(y); i++) {
if (value_of(y_vec[i]) == 0)
return operands_and_partials.value(0.0);
}
using std::exp;
using std::pow;
using std::log;
VectorBuilder<!is_constant_struct<T_dof>::value,
T_partials_return, T_dof> gamma_vec(stan::length(nu));
VectorBuilder<!is_constant_struct<T_dof>::value,
T_partials_return, T_dof> digamma_vec(stan::length(nu));
if (!is_constant_struct<T_dof>::value) {
for (size_t i = 0; i < stan::length(nu); i++) {
const T_partials_return half_nu_dbl = 0.5 * value_of(nu_vec[i]);
gamma_vec[i] = tgamma(half_nu_dbl);
digamma_vec[i] = digamma(half_nu_dbl);
}
}
for (size_t n = 0; n < N; n++) {
// Explicit results for extreme values
// The gradients are technically ill-defined, but treated as zero
if (value_of(y_vec[n]) == std::numeric_limits<double>::infinity()) {
return operands_and_partials.value(negative_infinity());
}
const T_partials_return y_dbl = value_of(y_vec[n]);
const T_partials_return y_inv_dbl = 1.0 / y_dbl;
const T_partials_return half_nu_dbl = 0.5 * value_of(nu_vec[n]);
const T_partials_return s_dbl = value_of(s_vec[n]);
const T_partials_return half_s2_overx_dbl = 0.5 * s_dbl * s_dbl
* y_inv_dbl;
const T_partials_return half_nu_s2_overx_dbl
= 2.0 * half_nu_dbl * half_s2_overx_dbl;
const T_partials_return Pn = gamma_p(half_nu_dbl,
half_nu_s2_overx_dbl);
const T_partials_return gamma_p_deriv = exp(-half_nu_s2_overx_dbl)
* pow(half_nu_s2_overx_dbl, half_nu_dbl-1) / tgamma(half_nu_dbl);
P += log(Pn);
if (!is_constant_struct<T_y>::value)
operands_and_partials.d_x1[n] -= half_nu_s2_overx_dbl * y_inv_dbl
* gamma_p_deriv / Pn;
if (!is_constant_struct<T_dof>::value)
operands_and_partials.d_x2[n]
-= (0.5 * grad_reg_inc_gamma(half_nu_dbl,
half_nu_s2_overx_dbl,
gamma_vec[n],
digamma_vec[n])
- half_s2_overx_dbl * gamma_p_deriv)
/ Pn;
if (!is_constant_struct<T_scale>::value)
operands_and_partials.d_x3[n] += 2.0 * half_nu_dbl * s_dbl * y_inv_dbl
* gamma_p_deriv / Pn;
}
return operands_and_partials.value(P);
}
示例13: exp
inline T0
operator()(const T0& arg1) const {
return exp(arg1);
}
示例14: TEST
TEST(AgradFwdExp,Fvar) {
using stan::math::fvar;
using std::exp;
fvar<double> x(0.5,1.0);
fvar<double> a = exp(x);
EXPECT_FLOAT_EQ(exp(0.5), a.val_);
EXPECT_FLOAT_EQ(exp(0.5), a.d_);
fvar<double> b = 2 * exp(x) + 4;
EXPECT_FLOAT_EQ(2 * exp(0.5) + 4, b.val_);
EXPECT_FLOAT_EQ(2 * exp(0.5), b.d_);
fvar<double> c = -exp(x) + 5;
EXPECT_FLOAT_EQ(-exp(0.5) + 5, c.val_);
EXPECT_FLOAT_EQ(-exp(0.5), c.d_);
fvar<double> d = -3 * exp(-x) + 5 * x;
EXPECT_FLOAT_EQ(-3 * exp(-0.5) + 5 * 0.5, d.val_);
EXPECT_FLOAT_EQ(3 * exp(-0.5) + 5, d.d_);
fvar<double> y(-0.5,1.0);
fvar<double> e = exp(y);
EXPECT_FLOAT_EQ(exp(-0.5), e.val_);
EXPECT_FLOAT_EQ(exp(-0.5), e.d_);
fvar<double> z(0.0,1.0);
fvar<double> f = exp(z);
EXPECT_FLOAT_EQ(exp(0.0), f.val_);
EXPECT_FLOAT_EQ(exp(0.0), f.d_);
}
示例15: exact_soln
double exact_soln(double x){
return 1.0 - (1.0-exp(-10.0))*x - exp(-10.0*x);
}