当前位置: 首页>>代码示例>>C++>>正文


C++ state::domain方法代码示例

本文整理汇总了C++中state::domain方法的典型用法代码示例。如果您正苦于以下问题:C++ state::domain方法的具体用法?C++ state::domain怎么用?C++ state::domain使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在state的用法示例。


在下文中一共展示了state::domain方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: zero

typename traj_simu<scalar_type>::state_jump_results traj_simu<scalar_type>::state_jump_intervals_derivative(
		const state_functor & f, const state_matrix_functor & Jac,
		const state & xinit, scalar_type tinit, scalar_type tmax,
		std::vector<typename lin_constraint_system::const_ptr> & guards,
		typename lin_constraint_system::const_ptr orig_invariant) const {

	//	reorder_state_functor<scalar_type> f= reorder_state_functor<scalar_type>(f_i)
	assert(xinit.domain()==f.map(xinit).domain());

	using namespace math;
	using namespace numeric;

	unsigned int gn = guards.size();
	state_jump_results res;
	scalar_type tdeb_k[gn]; //if jump_ok[i] then tdeb_k[i] time the root occurred
	unsigned int tdeb_index[gn]; // GF: the index in the current trajectory?

	bool jump_ok[gn]; //is the jump OK at current time ?
	scalar_type xp; //scalar used for initialisation
	state xinitprim;
	scalar_type zero(0);

	ode_solver solver;

	// ---------------------------------------------------------------------
	// prepare the affine maps corresponding to the root functions
	// ---------------------------------------------------------------------
	// every guard consists of a set of constraints.
	// every constraint is considered a root function.
	// the state is in the guard if all root functions are nonpositive.
	// z_map[0] is the invariant
	// z_map[1] ... z_map[gn] are the guards
	std::vector<typename affine_map::const_ptr> z_map(gn + 1);
	// @todo choose a domain for the solver and stick with it (use it everywhere)
	// current : domain of xinit chosen.

	// to bring lin_constraint_system to domain of solver
	// + convert to affine map form for functor
	matrix<scalar_type> A;
	vector<scalar_type> b;
	positional_vdomain dom;
	positional_vdomain codom;

	// Note: The canonic matrix form is Ax<=b, to the associated root function
	// must be the affine map Ax-b==0.

	lin_constraint_system invariant(*orig_invariant);
	invariant.reorder(xinit.domain());
	canonic_matrix_form(A, b, dom, invariant);
	codom = positional_vdomain();
	for (int k = 0; k < invariant.size(); k++)
		codom.add_variable(variable("traj_simu_dummy" + to_string(k)));
	z_map[0] = typename affine_map::ptr(
			new affine_map(vdom_matrix<scalar_type> (codom, dom, A),
					state(codom, -b)));

	// Reorder the guard constraints and prepare the root functions
	for (int i = 0; i < gn; i++) {
		typename lin_constraint_system::ptr reordered_guard =
				typename lin_constraint_system::ptr(
						new lin_constraint_system(*(guards[i])));
		reordered_guard->reorder(xinit.domain());
		guards[i] = reordered_guard;

		canonic_matrix_form(A, b, dom, *(guards[i]));
		codom = positional_vdomain();
		for (int k = 0; k < guards[i]->size(); k++)
			codom.add_variable(variable("traj_simu_dummy" + to_string(k)));
		z_map[i + 1] = typename affine_map::ptr(
				new affine_map(vdom_matrix<scalar_type> (codom, dom, A),
						state(codom, -b)));
	}
	// ---------------------------------------------------------------------


	// checking invariant + which guard is satified and which is'nt.
	// guards are assumed of the form ax<=b (calcul = ax - b<=O)

	// verification of invariant
	bool invariant_satisfied = true;
	bool invariant_atomic = false;

	// Check for each constraint in the invariant whether it is satisfied or not
	for (typename lin_constraint_system::const_iterator it = invariant.begin(); invariant_satisfied
			&& it != invariant.end(); ++it) {
		// Check whether x violates the constraint or is on the border
		xp = it->normal_eval(xinit);
		// For better numerics, don't compare xp to zero, but
		// xp-inh_coeff to -inh_coeff. That way we take into account the relative error
		scalar_type inh_coeff = it->get_canonic_inh_coeff();
		if (definitely(is_GT(xp, -inh_coeff))) {
			// The invariant constraint is violated.
			LOGGER_OS(DEBUG7,"state_jump_intervals_safe")
				<< "inv violated with " << xp << " > " << -inh_coeff;
			invariant_satisfied = false;
		} else if (!definitely(is_LT(xp, -inh_coeff))) {
			// The invariant constraint is on the border.
			// Check the derivative to see the whether the invariant function is increasing or decreasing.
			// The derivative is f(x). If a^Tf(x)>0, then the function is increasing, and so the invariant is atomic.
			scalar_type dxp = it->normal_eval(f.map(xinit));
//.........这里部分代码省略.........
开发者ID:selyunin,项目名称:spcx-src,代码行数:101,代码来源:traj_simu.hpp


注:本文中的state::domain方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。