当前位置: 首页>>代码示例>>C++>>正文


C++ QualType::isIntegerType方法代码示例

本文整理汇总了C++中QualType::isIntegerType方法的典型用法代码示例。如果您正苦于以下问题:C++ QualType::isIntegerType方法的具体用法?C++ QualType::isIntegerType怎么用?C++ QualType::isIntegerType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在QualType的用法示例。


在下文中一共展示了QualType::isIntegerType方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: VisitImplicitCastExpr

 void ICEVisitor::VisitImplicitCastExpr(ImplicitCastExpr *CE) {
   const NamedDecl *ACD = dyn_cast<NamedDecl>(AC->getDecl());
   VisitChildren(CE);
   const Expr *SE = CE->getSubExprAsWritten();
   std::string sename = SE->getType().getAsString();
   const clang::Expr *E = CE->getSubExpr();
   if (!(sename == "EventNumber_t"))
     return;
   QualType OTy = BR.getContext().getCanonicalType(E->getType());
   QualType TTy = BR.getContext().getCanonicalType(CE->getType());
   QualType ToTy = TTy.getUnqualifiedType();
   QualType OrigTy = OTy.getUnqualifiedType();
   if (!(ToTy->isIntegerType() || ToTy->isFloatingType()))
     return;
   if (ToTy->isBooleanType())
     return;
   CharUnits size_otype = BR.getContext().getTypeSizeInChars(OrigTy);
   CharUnits size_ttype = BR.getContext().getTypeSizeInChars(ToTy);
   std::string oname = OrigTy.getAsString();
   std::string tname = ToTy.getAsString();
   if (ToTy->isFloatingType()) {
     llvm::SmallString<100> buf;
     llvm::raw_svector_ostream os(buf);
     os << "Cast-to type, " << tname << ". Cast-from type, " << oname << " . " << support::getQualifiedName(*(ACD));
     clang::ento::PathDiagnosticLocation CELoc =
         clang::ento::PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
     BR.EmitBasicReport(ACD,
                        CheckName(),
                        "implicit cast of int type to float type",
                        "CMS code rules",
                        os.str(),
                        CELoc,
                        CE->getSourceRange());
   }
   if ((size_otype > size_ttype)) {
     llvm::SmallString<100> buf;
     llvm::raw_svector_ostream os(buf);
     os << "Cast-to type, " << tname << ". Cast-from type, " << oname << ". Cast may result in truncation. "
        << support::getQualifiedName(*(ACD));
     clang::ento::PathDiagnosticLocation CELoc =
         clang::ento::PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
     BR.EmitBasicReport(ACD,
                        CheckName(),
                        "implicit cast of int type to smaller int type could truncate",
                        "CMS code rules",
                        os.str(),
                        CELoc,
                        CE->getSourceRange());
   }
   if (ToTy->hasSignedIntegerRepresentation() && OrigTy->hasUnsignedIntegerRepresentation() ||
       ToTy->hasUnsignedIntegerRepresentation() && OrigTy->hasSignedIntegerRepresentation()) {
     llvm::SmallString<100> buf;
     llvm::raw_svector_ostream os(buf);
     os << "Cast-to type, " << tname << ". Cast-from type, " << oname << ". Changes int sign type. "
        << support::getQualifiedName(*(ACD));
     clang::ento::PathDiagnosticLocation CELoc =
         clang::ento::PathDiagnosticLocation::createBegin(CE, BR.getSourceManager(), AC);
     BR.EmitBasicReport(ACD,
                        CheckName(),
                        "implicit cast changes int sign type",
                        "CMS code rules",
                        os.str(),
                        CELoc,
                        CE->getSourceRange());
   }
   return;
 }
开发者ID:hroskes,项目名称:cmssw,代码行数:67,代码来源:TrunCastChecker.cpp

示例2: evalCast

// FIXME: should rewrite according to the cast kind.
SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
  castTy = Context.getCanonicalType(castTy);
  originalTy = Context.getCanonicalType(originalTy);
  if (val.isUnknownOrUndef() || castTy == originalTy)
    return val;

  // For const casts, just propagate the value.
  if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
    if (haveSimilarTypes(Context, Context.getPointerType(castTy),
                                  Context.getPointerType(originalTy)))
      return val;
  
  // Check for casts from pointers to integers.
  if (castTy->isIntegerType() && Loc::isLocType(originalTy))
    return evalCastFromLoc(cast<Loc>(val), castTy);

  // Check for casts from integers to pointers.
  if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
    if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
      if (const MemRegion *R = LV->getLoc().getAsRegion()) {
        StoreManager &storeMgr = StateMgr.getStoreManager();
        R = storeMgr.castRegion(R, castTy);
        return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
      }
      return LV->getLoc();
    }
    return dispatchCast(val, castTy);
  }

  // Just pass through function and block pointers.
  if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
    assert(Loc::isLocType(castTy));
    return val;
  }

  // Check for casts from array type to another type.
  if (originalTy->isArrayType()) {
    // We will always decay to a pointer.
    val = StateMgr.ArrayToPointer(cast<Loc>(val));

    // Are we casting from an array to a pointer?  If so just pass on
    // the decayed value.
    if (castTy->isPointerType())
      return val;

    // Are we casting from an array to an integer?  If so, cast the decayed
    // pointer value to an integer.
    assert(castTy->isIntegerType());

    // FIXME: Keep these here for now in case we decide soon that we
    // need the original decayed type.
    //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
    //    QualType pointerTy = C.getPointerType(elemTy);
    return evalCastFromLoc(cast<Loc>(val), castTy);
  }

  // Check for casts from a region to a specific type.
  if (const MemRegion *R = val.getAsRegion()) {
    // FIXME: We should handle the case where we strip off view layers to get
    //  to a desugared type.

    if (!Loc::isLocType(castTy)) {
      // FIXME: There can be gross cases where one casts the result of a function
      // (that returns a pointer) to some other value that happens to fit
      // within that pointer value.  We currently have no good way to
      // model such operations.  When this happens, the underlying operation
      // is that the caller is reasoning about bits.  Conceptually we are
      // layering a "view" of a location on top of those bits.  Perhaps
      // we need to be more lazy about mutual possible views, even on an
      // SVal?  This may be necessary for bit-level reasoning as well.
      return UnknownVal();
    }

    // We get a symbolic function pointer for a dereference of a function
    // pointer, but it is of function type. Example:

    //  struct FPRec {
    //    void (*my_func)(int * x);
    //  };
    //
    //  int bar(int x);
    //
    //  int f1_a(struct FPRec* foo) {
    //    int x;
    //    (*foo->my_func)(&x);
    //    return bar(x)+1; // no-warning
    //  }

    assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
           originalTy->isBlockPointerType() || castTy->isReferenceType());

    StoreManager &storeMgr = StateMgr.getStoreManager();

    // Delegate to store manager to get the result of casting a region to a
    // different type.  If the MemRegion* returned is NULL, this expression
    // Evaluates to UnknownVal.
    R = storeMgr.castRegion(R, castTy);
    return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
  }
//.........这里部分代码省略.........
开发者ID:2014-class,项目名称:freerouter,代码行数:101,代码来源:SValBuilder.cpp

示例3: M

/// Create a fake body for dispatch_once.
static Stmt *create_dispatch_once(ASTContext &C, const FunctionDecl *D) {
  // Check if we have at least two parameters.
  if (D->param_size() != 2)
    return 0;

  // Check if the first parameter is a pointer to integer type.
  const ParmVarDecl *Predicate = D->getParamDecl(0);
  QualType PredicateQPtrTy = Predicate->getType();
  const PointerType *PredicatePtrTy = PredicateQPtrTy->getAs<PointerType>();
  if (!PredicatePtrTy)
    return 0;
  QualType PredicateTy = PredicatePtrTy->getPointeeType();
  if (!PredicateTy->isIntegerType())
    return 0;
  
  // Check if the second parameter is the proper block type.
  const ParmVarDecl *Block = D->getParamDecl(1);
  QualType Ty = Block->getType();
  if (!isDispatchBlock(Ty))
    return 0;
  
  // Everything checks out.  Create a fakse body that checks the predicate,
  // sets it, and calls the block.  Basically, an AST dump of:
  //
  // void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block) {
  //  if (!*predicate) {
  //    *predicate = 1;
  //    block();
  //  }
  // }
  
  ASTMaker M(C);
  
  // (1) Create the call.
  DeclRefExpr *DR = M.makeDeclRefExpr(Block);
  ImplicitCastExpr *ICE = M.makeLvalueToRvalue(DR, Ty);
  CallExpr *CE = new (C) CallExpr(C, ICE, None, C.VoidTy, VK_RValue,
                                  SourceLocation());

  // (2) Create the assignment to the predicate.
  IntegerLiteral *IL =
    IntegerLiteral::Create(C, llvm::APInt(C.getTypeSize(C.IntTy), (uint64_t) 1),
                           C.IntTy, SourceLocation());
  BinaryOperator *B =
    M.makeAssignment(
       M.makeDereference(
          M.makeLvalueToRvalue(
            M.makeDeclRefExpr(Predicate), PredicateQPtrTy),
            PredicateTy),
       M.makeIntegralCast(IL, PredicateTy),
       PredicateTy);
  
  // (3) Create the compound statement.
  Stmt *Stmts[2];
  Stmts[0] = B;
  Stmts[1] = CE;
  CompoundStmt *CS = M.makeCompound(ArrayRef<Stmt*>(Stmts, 2));
  
  // (4) Create the 'if' condition.
  ImplicitCastExpr *LValToRval =
    M.makeLvalueToRvalue(
      M.makeDereference(
        M.makeLvalueToRvalue(
          M.makeDeclRefExpr(Predicate),
          PredicateQPtrTy),
        PredicateTy),
    PredicateTy);
  
  UnaryOperator *UO = new (C) UnaryOperator(LValToRval, UO_LNot, C.IntTy,
                                           VK_RValue, OK_Ordinary,
                                           SourceLocation());
  
  // (5) Create the 'if' statement.
  IfStmt *If = new (C) IfStmt(C, SourceLocation(), 0, UO, CS);
  return If;
}
开发者ID:m4mbr3,项目名称:PrivilegeSeparation-clang,代码行数:77,代码来源:BodyFarm.cpp

示例4: ConvertedInt

const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
                                                     const SymExpr *LHS,
                                                     BinaryOperator::Opcode op,
                                                     const llvm::APSInt& Int) {
  assert(BinaryOperator::isComparisonOp(op) &&
         "Non-comparison ops should be rewritten as comparisons to zero.");

   // We only handle simple comparisons of the form "$sym == constant"
   // or "($sym+constant1) == constant2".
   // The adjustment is "constant1" in the above expression. It's used to
   // "slide" the solution range around for modular arithmetic. For example,
   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
   // the subclasses of SimpleConstraintManager to handle the adjustment.
   llvm::APSInt Adjustment;

  // First check if the LHS is a simple symbol reference.
  SymbolRef Sym = dyn_cast<SymbolData>(LHS);
  if (Sym) {
    Adjustment = 0;
  } else {
    // Next, see if it's a "($sym+constant1)" expression.
    const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);

    // We don't handle "($sym1+$sym2)".
    // Give up and assume the constraint is feasible.
    if (!SE)
      return state;

    // We don't handle "(<expr>+constant1)".
    // Give up and assume the constraint is feasible.
    Sym = dyn_cast<SymbolData>(SE->getLHS());
    if (!Sym)
      return state;

    // Get the constant out of the expression "($sym+constant1)".
    switch (SE->getOpcode()) {
    case BO_Add:
      Adjustment = SE->getRHS();
      break;
    case BO_Sub:
      Adjustment = -SE->getRHS();
      break;
    default:
      // We don't handle non-additive operators.
      // Give up and assume the constraint is feasible.
      return state;
    }
  }

  // FIXME: This next section is a hack. It silently converts the integers to
  // be of the same type as the symbol, which is not always correct. Really the
  // comparisons should be performed using the Int's type, then mapped back to
  // the symbol's range of values.
  GRStateManager &StateMgr = state->getStateManager();
  ASTContext &Ctx = StateMgr.getContext();

  QualType T = Sym->getType(Ctx);
  assert(T->isIntegerType() || Loc::IsLocType(T));
  unsigned bitwidth = Ctx.getTypeSize(T);
  bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);

  // Convert the adjustment.
  Adjustment.setIsUnsigned(isSymUnsigned);
  Adjustment.extOrTrunc(bitwidth);

  // Convert the right-hand side integer.
  llvm::APSInt ConvertedInt(Int, isSymUnsigned);
  ConvertedInt.extOrTrunc(bitwidth);

  switch (op) {
  default:
    // No logic yet for other operators.  Assume the constraint is feasible.
    return state;

  case BO_EQ:
    return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment);

  case BO_NE:
    return AssumeSymNE(state, Sym, ConvertedInt, Adjustment);

  case BO_GT:
    return AssumeSymGT(state, Sym, ConvertedInt, Adjustment);

  case BO_GE:
    return AssumeSymGE(state, Sym, ConvertedInt, Adjustment);

  case BO_LT:
    return AssumeSymLT(state, Sym, ConvertedInt, Adjustment);

  case BO_LE:
    return AssumeSymLE(state, Sym, ConvertedInt, Adjustment);
  } // end switch
}
开发者ID:CPFL,项目名称:guc,代码行数:94,代码来源:SimpleConstraintManager.cpp

示例5: CheckOpen

void UnixAPIChecker::CheckOpen(CheckerContext &C, const CallExpr *CE) const {
  ProgramStateRef state = C.getState();

  if (CE->getNumArgs() < 2) {
    // The frontend should issue a warning for this case, so this is a sanity
    // check.
    return;
  } else if (CE->getNumArgs() == 3) {
    const Expr *Arg = CE->getArg(2);
    QualType QT = Arg->getType();
    if (!QT->isIntegerType()) {
      ReportOpenBug(C, state,
                    "Third argument to 'open' is not an integer",
                    Arg->getSourceRange());
      return;
    }
  } else if (CE->getNumArgs() > 3) {
    ReportOpenBug(C, state,
                  "Call to 'open' with more than three arguments",
                  CE->getArg(3)->getSourceRange());
    return;
  }

  // The definition of O_CREAT is platform specific.  We need a better way
  // of querying this information from the checking environment.
  if (!Val_O_CREAT.hasValue()) {
    if (C.getASTContext().getTargetInfo().getTriple().getVendor() 
                                                      == llvm::Triple::Apple)
      Val_O_CREAT = 0x0200;
    else {
      // FIXME: We need a more general way of getting the O_CREAT value.
      // We could possibly grovel through the preprocessor state, but
      // that would require passing the Preprocessor object to the ExprEngine.
      // See also: MallocChecker.cpp / M_ZERO.
      return;
    }
  }

  // Now check if oflags has O_CREAT set.
  const Expr *oflagsEx = CE->getArg(1);
  const SVal V = state->getSVal(oflagsEx, C.getLocationContext());
  if (!V.getAs<NonLoc>()) {
    // The case where 'V' can be a location can only be due to a bad header,
    // so in this case bail out.
    return;
  }
  NonLoc oflags = V.castAs<NonLoc>();
  NonLoc ocreateFlag = C.getSValBuilder()
      .makeIntVal(Val_O_CREAT.getValue(), oflagsEx->getType()).castAs<NonLoc>();
  SVal maskedFlagsUC = C.getSValBuilder().evalBinOpNN(state, BO_And,
                                                      oflags, ocreateFlag,
                                                      oflagsEx->getType());
  if (maskedFlagsUC.isUnknownOrUndef())
    return;
  DefinedSVal maskedFlags = maskedFlagsUC.castAs<DefinedSVal>();

  // Check if maskedFlags is non-zero.
  ProgramStateRef trueState, falseState;
  std::tie(trueState, falseState) = state->assume(maskedFlags);

  // Only emit an error if the value of 'maskedFlags' is properly
  // constrained;
  if (!(trueState && !falseState))
    return;

  if (CE->getNumArgs() < 3) {
    ReportOpenBug(C, trueState,
                  "Call to 'open' requires a third argument when "
                  "the 'O_CREAT' flag is set",
                  oflagsEx->getSourceRange());
  }
}
开发者ID:4ntoine,项目名称:clang,代码行数:72,代码来源:UnixAPIChecker.cpp

示例6: Audit

bool AuditCFNumberCreate::Audit(ExplodedNode* N,GRStateManager&){
  const CallExpr* CE =
    cast<CallExpr>(cast<PostStmt>(N->getLocation()).getStmt());
  const Expr* Callee = CE->getCallee();
  SVal CallV = N->getState()->getSVal(Callee);
  const FunctionDecl* FD = CallV.getAsFunctionDecl();

  if (!FD || FD->getIdentifier() != II || CE->getNumArgs()!=3)
    return false;

  // Get the value of the "theType" argument.
  SVal TheTypeVal = N->getState()->getSVal(CE->getArg(1));

    // FIXME: We really should allow ranges of valid theType values, and
    //   bifurcate the state appropriately.
  nonloc::ConcreteInt* V = dyn_cast<nonloc::ConcreteInt>(&TheTypeVal);

  if (!V)
    return false;

  uint64_t NumberKind = V->getValue().getLimitedValue();
  Optional<uint64_t> TargetSize = GetCFNumberSize(Ctx, NumberKind);

  // FIXME: In some cases we can emit an error.
  if (!TargetSize.isKnown())
    return false;

  // Look at the value of the integer being passed by reference.  Essentially
  // we want to catch cases where the value passed in is not equal to the
  // size of the type being created.
  SVal TheValueExpr = N->getState()->getSVal(CE->getArg(2));

  // FIXME: Eventually we should handle arbitrary locations.  We can do this
  //  by having an enhanced memory model that does low-level typing.
  loc::MemRegionVal* LV = dyn_cast<loc::MemRegionVal>(&TheValueExpr);

  if (!LV)
    return false;

  const TypedRegion* R = dyn_cast<TypedRegion>(LV->StripCasts());

  if (!R)
    return false;

  QualType T = Ctx.getCanonicalType(R->getValueType(Ctx));

  // FIXME: If the pointee isn't an integer type, should we flag a warning?
  //  People can do weird stuff with pointers.

  if (!T->isIntegerType())
    return false;

  uint64_t SourceSize = Ctx.getTypeSize(T);

  // CHECK: is SourceSize == TargetSize

  if (SourceSize == TargetSize)
    return false;

  AddError(R, CE->getArg(2), N, SourceSize, TargetSize, NumberKind);

  // FIXME: We can actually create an abstract "CFNumber" object that has
  //  the bits initialized to the provided values.
  return SourceSize < TargetSize;
}
开发者ID:jhoush,项目名称:dist-clang,代码行数:65,代码来源:BasicObjCFoundationChecks.cpp

示例7: eval_rexpr

// caller must free returned value
const EmuVal* eval_rexpr(const Expr* e){
	errs() << "\nDEBUG: about to eval rexpr:\n";
	e->dump();

	if(isa<IntegerLiteral>(e)){
		const IntegerLiteral *obj = (const IntegerLiteral*)e;
		APInt i = obj->getValue();
		if(i.slt(EMU_MIN_INT) || i.sgt(EMU_MAX_INT)){
			e->dump();
			cant_handle();
		}
		return new EmuNum<NUM_TYPE_INT>(i);
	} else if(isa<CharacterLiteral>(e)){
		const CharacterLiteral *obj = (const CharacterLiteral*)e;
		unsigned int i = obj->getValue();
		if(i > 127){
			e->dump();
			cant_handle();
		}
		return new EmuNum<NUM_TYPE_CHAR>(new APInt(8, i, true));
	} else if(isa<UnaryOperator>(e)){
		const UnaryOperator *obj = (const UnaryOperator*)e;
		const Expr* sub = obj->getSubExpr();
		const auto op = obj->getOpcode();
		switch(op){
		case UO_AddrOf:
		{
			lvalue arg = eval_lexpr(sub);
			return new EmuPtr(arg.ptr, e->getType());
		}
		case UO_LNot:
		case UO_Minus:
		{
			const EmuVal* arg = eval_rexpr(sub);
			if(!arg->obj_type->isIntegerType()){
				cant_cast();
			}
			if(op == UO_LNot){
				return ((const EmuNumGeneric*)arg)->lnot();
			} else if (op == UO_Minus){
				return ((const EmuNumGeneric*)arg)->neg();
			}
		}
		case UO_Deref:
		case UO_Extension:
		case UO_Imag:
		case UO_Real:
		case UO_Not:
		case UO_PostInc:
		case UO_PostDec:
		case UO_PreInc:
		case UO_PreDec:
		case UO_Plus:
		default:
			llvm::errs() << "Got opcode " << obj->getOpcode() << "\n";
			cant_handle();
		}
	} else if(isa<BinaryOperator>(e)){
		const BinaryOperator* ex = (const BinaryOperator*)e;
		BinaryOperatorKind op = ex->getOpcode();

		// right always an rexpr
		const EmuVal *right = eval_rexpr(ex->getRHS());

		switch(op){
		case BO_Assign:
		{
			lvalue left = eval_lexpr(ex->getLHS());
			const EmuVal* ans = right->cast_to(left.type);
			delete right;
			left.ptr.block->write(ans, left.ptr.offset);
			return ans;
		}
		case BO_LT:
		case BO_GT:
		case BO_LE:
		case BO_GE:
		case BO_EQ:
		case BO_NE:
		{
			const EmuVal *left = eval_rexpr(ex->getLHS());
			QualType tl = left->obj_type.getCanonicalType();
			QualType tr = right->obj_type.getCanonicalType();
			if(tl != IntType || tr != IntType){
				left->obj_type.dump();
				right->obj_type.dump();
				cant_handle();
			}
			const llvm::APInt* lval = &((const EmuNum<NUM_TYPE_INT>*)left)->val;
			llvm::APInt rval = ((const EmuNum<NUM_TYPE_INT>*)right)->val;
			int ans;
			if(lval->isNegative()){
				if(op == BO_LT)    ans = (lval->slt(rval))?1:0;
				else if(op==BO_GT) ans = (lval->sgt(rval))?1:0;
				else if(op==BO_LE) ans = (lval->sle(rval))?1:0;
				else if(op==BO_GE) ans = (lval->sge(rval))?1:0;
				else if(op==BO_EQ) ans = (lval->eq( rval))?1:0;
				else if(op==BO_NE) ans = (lval->ne( rval))?1:0;
			} else if(rval.isNegative()){
//.........这里部分代码省略.........
开发者ID:ohyoung,项目名称:CTutor,代码行数:101,代码来源:eval.cpp

示例8: checkPreStmt

void CFNumberCreateChecker::checkPreStmt(const CallExpr *CE,
                                         CheckerContext &C) const {
  ProgramStateRef state = C.getState();
  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD)
    return;
  
  ASTContext &Ctx = C.getASTContext();
  if (!II)
    II = &Ctx.Idents.get("CFNumberCreate");

  if (FD->getIdentifier() != II || CE->getNumArgs() != 3)
    return;

  // Get the value of the "theType" argument.
  const LocationContext *LCtx = C.getLocationContext();
  SVal TheTypeVal = state->getSVal(CE->getArg(1), LCtx);

  // FIXME: We really should allow ranges of valid theType values, and
  //   bifurcate the state appropriately.
  nonloc::ConcreteInt* V = dyn_cast<nonloc::ConcreteInt>(&TheTypeVal);
  if (!V)
    return;

  uint64_t NumberKind = V->getValue().getLimitedValue();
  Optional<uint64_t> TargetSize = GetCFNumberSize(Ctx, NumberKind);

  // FIXME: In some cases we can emit an error.
  if (!TargetSize.isKnown())
    return;

  // Look at the value of the integer being passed by reference.  Essentially
  // we want to catch cases where the value passed in is not equal to the
  // size of the type being created.
  SVal TheValueExpr = state->getSVal(CE->getArg(2), LCtx);

  // FIXME: Eventually we should handle arbitrary locations.  We can do this
  //  by having an enhanced memory model that does low-level typing.
  loc::MemRegionVal* LV = dyn_cast<loc::MemRegionVal>(&TheValueExpr);
  if (!LV)
    return;

  const TypedValueRegion* R = dyn_cast<TypedValueRegion>(LV->stripCasts());
  if (!R)
    return;

  QualType T = Ctx.getCanonicalType(R->getValueType());

  // FIXME: If the pointee isn't an integer type, should we flag a warning?
  //  People can do weird stuff with pointers.

  if (!T->isIntegerType())
    return;

  uint64_t SourceSize = Ctx.getTypeSize(T);

  // CHECK: is SourceSize == TargetSize
  if (SourceSize == TargetSize)
    return;

  // Generate an error.  Only generate a sink if 'SourceSize < TargetSize';
  // otherwise generate a regular node.
  //
  // FIXME: We can actually create an abstract "CFNumber" object that has
  //  the bits initialized to the provided values.
  //
  if (ExplodedNode *N = SourceSize < TargetSize ? C.generateSink() 
                                                : C.addTransition()) {
    SmallString<128> sbuf;
    llvm::raw_svector_ostream os(sbuf);
    
    os << (SourceSize == 8 ? "An " : "A ")
       << SourceSize << " bit integer is used to initialize a CFNumber "
                        "object that represents "
       << (TargetSize == 8 ? "an " : "a ")
       << TargetSize << " bit integer. ";
    
    if (SourceSize < TargetSize)
      os << (TargetSize - SourceSize)
      << " bits of the CFNumber value will be garbage." ;
    else
      os << (SourceSize - TargetSize)
      << " bits of the input integer will be lost.";

    if (!BT)
      BT.reset(new APIMisuse("Bad use of CFNumberCreate"));
    
    BugReport *report = new BugReport(*BT, os.str(), N);
    report->addRange(CE->getArg(2)->getSourceRange());
    C.EmitReport(report);
  }
}
开发者ID:2014-class,项目名称:freerouter,代码行数:92,代码来源:BasicObjCFoundationChecks.cpp

示例9: evalBinOpNN


//.........这里部分代码省略.........
      // If both the LHS and the current expression are additive,
      // fold their constants.
      if (BinaryOperator::isAdditiveOp(op)) {
        BinaryOperator::Opcode lop = symIntExpr->getOpcode();
        if (BinaryOperator::isAdditiveOp(lop)) {
          // resultTy may not be the best type to convert to, but it's
          // probably the best choice in expressions with mixed type
          // (such as x+1U+2LL). The rules for implicit conversions should
          // choose a reasonable type to preserve the expression, and will
          // at least match how the value is going to be used.
          const llvm::APSInt &first =
            BasicVals.Convert(resultTy, symIntExpr->getRHS());
          const llvm::APSInt &second =
            BasicVals.Convert(resultTy, rhsInt->getValue());
          const llvm::APSInt *newRHS;
          if (lop == op)
            newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
          else
            newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
          return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
        }
      }

      // Otherwise, make a SymExprVal out of the expression.
      return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
    }
    case nonloc::ConcreteIntKind: {
      const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);

      // Is the RHS a symbol we can simplify?
      // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case.
      if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
        SymbolRef RSym = srhs->getSymbol();
        if (RSym->getType(Context)->isIntegerType()) {
          if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
            // The symbol evaluates to a constant.
            const llvm::APSInt *rhs_I;
            if (BinaryOperator::isRelationalOp(op))
              rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant);
            else
              rhs_I = &BasicVals.Convert(resultTy, *Constant);

            rhs = nonloc::ConcreteInt(*rhs_I);
          }
        }
      }

      if (isa<nonloc::ConcreteInt>(rhs)) {
        return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
      } else {
        const llvm::APSInt& lhsValue = lhsInt.getValue();
        
        // Swap the left and right sides and flip the operator if doing so
        // allows us to better reason about the expression (this is a form
        // of expression canonicalization).
        // While we're at it, catch some special cases for non-commutative ops.
        NonLoc tmp = rhs;
        rhs = lhs;
        lhs = tmp;

        switch (op) {
          case BO_LT:
          case BO_GT:
          case BO_LE:
          case BO_GE:
            op = ReverseComparison(op);
开发者ID:Bootz,项目名称:multicore-opimization,代码行数:67,代码来源:SimpleSValBuilder.cpp

示例10: M

/// Create a fake body for dispatch_once.
static Stmt *create_dispatch_once(ASTContext &C, const FunctionDecl *D) {
  // Check if we have at least two parameters.
  if (D->param_size() != 2)
    return nullptr;

  // Check if the first parameter is a pointer to integer type.
  const ParmVarDecl *Predicate = D->getParamDecl(0);
  QualType PredicateQPtrTy = Predicate->getType();
  const PointerType *PredicatePtrTy = PredicateQPtrTy->getAs<PointerType>();
  if (!PredicatePtrTy)
    return nullptr;
  QualType PredicateTy = PredicatePtrTy->getPointeeType();
  if (!PredicateTy->isIntegerType())
    return nullptr;

  // Check if the second parameter is the proper block type.
  const ParmVarDecl *Block = D->getParamDecl(1);
  QualType Ty = Block->getType();
  if (!isDispatchBlock(Ty))
    return nullptr;

  // Everything checks out.  Create a fakse body that checks the predicate,
  // sets it, and calls the block.  Basically, an AST dump of:
  //
  // void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block) {
  //  if (*predicate != ~0l) {
  //    *predicate = ~0l;
  //    block();
  //  }
  // }

  ASTMaker M(C);

  // (1) Create the call.
  CallExpr *CE = CallExpr::Create(
      /*ASTContext=*/C,
      /*StmtClass=*/M.makeLvalueToRvalue(/*Expr=*/Block),
      /*args=*/None,
      /*QualType=*/C.VoidTy,
      /*ExprValueType=*/VK_RValue,
      /*SourceLocation=*/SourceLocation());

  // (2) Create the assignment to the predicate.
  Expr *DoneValue =
      new (C) UnaryOperator(M.makeIntegerLiteral(0, C.LongTy), UO_Not, C.LongTy,
                            VK_RValue, OK_Ordinary, SourceLocation(),
                            /*CanOverflow*/false);

  BinaryOperator *B =
    M.makeAssignment(
       M.makeDereference(
          M.makeLvalueToRvalue(
            M.makeDeclRefExpr(Predicate), PredicateQPtrTy),
            PredicateTy),
       M.makeIntegralCast(DoneValue, PredicateTy),
       PredicateTy);

  // (3) Create the compound statement.
  Stmt *Stmts[] = { B, CE };
  CompoundStmt *CS = M.makeCompound(Stmts);

  // (4) Create the 'if' condition.
  ImplicitCastExpr *LValToRval =
    M.makeLvalueToRvalue(
      M.makeDereference(
        M.makeLvalueToRvalue(
          M.makeDeclRefExpr(Predicate),
          PredicateQPtrTy),
        PredicateTy),
    PredicateTy);

  Expr *GuardCondition = M.makeComparison(LValToRval, DoneValue, BO_NE);
  // (5) Create the 'if' statement.
  auto *If = IfStmt::Create(C, SourceLocation(),
                            /* IsConstexpr=*/false,
                            /* init=*/nullptr,
                            /* var=*/nullptr,
                            /* cond=*/GuardCondition,
                            /* then=*/CS);
  return If;
}
开发者ID:jvesely,项目名称:clang,代码行数:82,代码来源:BodyFarm.cpp

示例11: BuildInstanceMessage


//.........这里部分代码省略.........
      } else if (const ObjCObjectPointerType *OCIType
                   = ReceiverType->getAsObjCInterfacePointerType()) {
        // We allow sending a message to a pointer to an interface (an object).
        ClassDecl = OCIType->getInterfaceDecl();
        // FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be
        // faster than the following method (which can do *many* linear searches).
        // The idea is to add class info to MethodPool.
        Method = ClassDecl->lookupInstanceMethod(Sel);

        if (!Method) {
          // Search protocol qualifiers.
          for (ObjCObjectPointerType::qual_iterator QI = OCIType->qual_begin(),
                 E = OCIType->qual_end(); QI != E; ++QI) {
            if ((Method = (*QI)->lookupInstanceMethod(Sel)))
              break;
          }
        }
        if (!Method) {
          // If we have implementations in scope, check "private" methods.
          Method = LookupPrivateInstanceMethod(Sel, ClassDecl);

          if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
            // If we still haven't found a method, look in the global pool. This
            // behavior isn't very desirable, however we need it for GCC
            // compatibility. FIXME: should we deviate??
            if (OCIType->qual_empty()) {
              Method = LookupInstanceMethodInGlobalPool(Sel,
                                                 SourceRange(LBracLoc, RBracLoc)); 
              if (Method && !OCIType->getInterfaceDecl()->isForwardDecl())
                Diag(Loc, diag::warn_maynot_respond)
                  << OCIType->getInterfaceDecl()->getIdentifier() << Sel;
            }
          }
        }
        if (Method && DiagnoseUseOfDecl(Method, Loc))
          return ExprError();
      } else if (!Context.getObjCIdType().isNull() &&
                 (ReceiverType->isPointerType() || 
                  ReceiverType->isIntegerType())) {
        // Implicitly convert integers and pointers to 'id' but emit a warning.
        Diag(Loc, diag::warn_bad_receiver_type)
          << ReceiverType 
          << Receiver->getSourceRange();
        if (ReceiverType->isPointerType())
          ImpCastExprToType(Receiver, Context.getObjCIdType(), 
                            CastExpr::CK_BitCast);
        else
          ImpCastExprToType(Receiver, Context.getObjCIdType(),
                            CastExpr::CK_IntegralToPointer);
        ReceiverType = Receiver->getType();
      } 
      else if (getLangOptions().CPlusPlus &&
               !PerformContextuallyConvertToObjCId(Receiver)) {
        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Receiver)) {
          Receiver = ICE->getSubExpr();
          ReceiverType = Receiver->getType();
        }
        return BuildInstanceMessage(Owned(Receiver),
                                    ReceiverType,
                                    SuperLoc,
                                    Sel,
                                    Method,
                                    LBracLoc, 
                                    RBracLoc,
                                    move(ArgsIn));
      } else {
        // Reject other random receiver types (e.g. structs).
        Diag(Loc, diag::err_bad_receiver_type)
          << ReceiverType << Receiver->getSourceRange();
        return ExprError();
      }
    }
  }

  // Check the message arguments.
  unsigned NumArgs = ArgsIn.size();
  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
  QualType ReturnType;
  if (CheckMessageArgumentTypes(Args, NumArgs, Sel, Method, false,
                                LBracLoc, RBracLoc, ReturnType))
    return ExprError();
  
  if (!ReturnType->isVoidType()) {
    if (RequireCompleteType(LBracLoc, ReturnType, 
                            diag::err_illegal_message_expr_incomplete_type))
      return ExprError();
  }

  // Construct the appropriate ObjCMessageExpr instance.
  Expr *Result;
  if (SuperLoc.isValid())
    Result = ObjCMessageExpr::Create(Context, ReturnType, LBracLoc,
                                     SuperLoc,  /*IsInstanceSuper=*/true,
                                     ReceiverType, Sel, Method, 
                                     Args, NumArgs, RBracLoc);
  else
    Result = ObjCMessageExpr::Create(Context, ReturnType, LBracLoc, Receiver, 
                                     Sel, Method, Args, NumArgs, RBracLoc);
  return MaybeBindToTemporary(Result);
}
开发者ID:lgerbarg,项目名称:clang,代码行数:101,代码来源:SemaExprObjC.cpp


注:本文中的QualType::isIntegerType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。