本文整理汇总了C++中QualType::getLocalUnqualifiedType方法的典型用法代码示例。如果您正苦于以下问题:C++ QualType::getLocalUnqualifiedType方法的具体用法?C++ QualType::getLocalUnqualifiedType怎么用?C++ QualType::getLocalUnqualifiedType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类QualType
的用法示例。
在下文中一共展示了QualType::getLocalUnqualifiedType方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mangleExtraDimensions
void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
llvm::SmallVector<llvm::APInt, 3> Dimensions;
for (;;) {
if (ElementTy->isConstantArrayType()) {
const ConstantArrayType *CAT =
static_cast<const ConstantArrayType *>(ElementTy.getTypePtr());
Dimensions.push_back(CAT->getSize());
ElementTy = CAT->getElementType();
} else if (ElementTy->isVariableArrayType()) {
assert(false && "Don't know how to mangle VLAs!");
} else if (ElementTy->isDependentSizedArrayType()) {
// The dependent expression has to be folded into a constant (TODO).
assert(false && "Don't know how to mangle dependent-sized arrays!");
} else if (ElementTy->isIncompleteArrayType()) continue;
else break;
}
mangleQualifiers(ElementTy.getQualifiers(), false);
// If there are any additional dimensions, mangle them now.
if (Dimensions.size() > 0) {
Out << 'Y';
// <dimension-count> ::= <number> # number of extra dimensions
mangleNumber(Dimensions.size());
for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
mangleNumber(Dimensions[Dim].getLimitedValue());
}
}
mangleType(ElementTy.getLocalUnqualifiedType());
}
示例2: mangleType
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
// <class name> <type>
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) {
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
Out << '8';
mangleName(cast<RecordType>(T->getClass())->getDecl());
mangleType(FPT, NULL, false, true);
} else {
mangleQualifiers(PointeeType.getQualifiers(), true);
mangleName(cast<RecordType>(T->getClass())->getDecl());
mangleType(PointeeType.getLocalUnqualifiedType());
}
}
示例3: mangleVariableEncoding
void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
// <type-encoding> ::= <storage-class> <variable-type>
// <storage-class> ::= 0 # private static member
// ::= 1 # protected static member
// ::= 2 # public static member
// ::= 3 # global
// ::= 4 # static local
// The first character in the encoding (after the name) is the storage class.
if (VD->isStaticDataMember()) {
// If it's a static member, it also encodes the access level.
switch (VD->getAccess()) {
default:
case AS_private: Out << '0'; break;
case AS_protected: Out << '1'; break;
case AS_public: Out << '2'; break;
}
}
else if (!VD->isStaticLocal())
Out << '3';
else
Out << '4';
// Now mangle the type.
// <variable-type> ::= <type> <cvr-qualifiers>
// ::= <type> A # pointers, references, arrays
// Pointers and references are odd. The type of 'int * const foo;' gets
// mangled as 'QAHA' instead of 'PAHB', for example.
QualType Ty = VD->getType();
if (Ty->isPointerType() || Ty->isReferenceType()) {
mangleType(Ty);
Out << 'A';
} else if (Ty->isArrayType()) {
// Global arrays are funny, too.
mangleType(cast<ArrayType>(Ty.getTypePtr()), true);
Out << 'A';
} else {
mangleType(Ty.getLocalUnqualifiedType());
mangleQualifiers(Ty.getLocalQualifiers(), false);
}
}
示例4: MakeElementRegion
const MemRegion *StoreManager::CastRegion(const MemRegion *R, QualType CastToTy) {
ASTContext& Ctx = StateMgr.getContext();
// Handle casts to Objective-C objects.
if (CastToTy->isObjCObjectPointerType())
return R->StripCasts();
if (CastToTy->isBlockPointerType()) {
// FIXME: We may need different solutions, depending on the symbol
// involved. Blocks can be casted to/from 'id', as they can be treated
// as Objective-C objects. This could possibly be handled by enhancing
// our reasoning of downcasts of symbolic objects.
if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
return R;
// We don't know what to make of it. Return a NULL region, which
// will be interpretted as UnknownVal.
return NULL;
}
// Now assume we are casting from pointer to pointer. Other cases should
// already be handled.
QualType PointeeTy = CastToTy->getAs<PointerType>()->getPointeeType();
QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
// Handle casts to void*. We just pass the region through.
if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
return R;
// Handle casts from compatible types.
if (R->isBoundable())
if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
if (CanonPointeeTy == ObjTy)
return R;
}
// Process region cast according to the kind of the region being cast.
switch (R->getKind()) {
case MemRegion::CXXThisRegionKind:
case MemRegion::GenericMemSpaceRegionKind:
case MemRegion::StackLocalsSpaceRegionKind:
case MemRegion::StackArgumentsSpaceRegionKind:
case MemRegion::HeapSpaceRegionKind:
case MemRegion::UnknownSpaceRegionKind:
case MemRegion::NonStaticGlobalSpaceRegionKind:
case MemRegion::StaticGlobalSpaceRegionKind: {
assert(0 && "Invalid region cast");
break;
}
case MemRegion::FunctionTextRegionKind:
case MemRegion::BlockTextRegionKind:
case MemRegion::BlockDataRegionKind:
case MemRegion::StringRegionKind:
// FIXME: Need to handle arbitrary downcasts.
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::CompoundLiteralRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::CXXObjectRegionKind:
return MakeElementRegion(R, PointeeTy);
case MemRegion::ElementRegionKind: {
// If we are casting from an ElementRegion to another type, the
// algorithm is as follows:
//
// (1) Compute the "raw offset" of the ElementRegion from the
// base region. This is done by calling 'getAsRawOffset()'.
//
// (2a) If we get a 'RegionRawOffset' after calling
// 'getAsRawOffset()', determine if the absolute offset
// can be exactly divided into chunks of the size of the
// casted-pointee type. If so, create a new ElementRegion with
// the pointee-cast type as the new ElementType and the index
// being the offset divded by the chunk size. If not, create
// a new ElementRegion at offset 0 off the raw offset region.
//
// (2b) If we don't a get a 'RegionRawOffset' after calling
// 'getAsRawOffset()', it means that we are at offset 0.
//
// FIXME: Handle symbolic raw offsets.
const ElementRegion *elementR = cast<ElementRegion>(R);
const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
const MemRegion *baseR = rawOff.getRegion();
// If we cannot compute a raw offset, throw up our hands and return
// a NULL MemRegion*.
if (!baseR)
return NULL;
CharUnits off = CharUnits::fromQuantity(rawOff.getByteOffset());
if (off.isZero()) {
// Edge case: we are at 0 bytes off the beginning of baseR. We
// check to see if type we are casting to is the same as the base
//.........这里部分代码省略.........
示例5: CheckExceptionSpecSubset
/// CheckExceptionSpecSubset - Check whether the second function type's
/// exception specification is a subset (or equivalent) of the first function
/// type. This is used by override and pointer assignment checks.
bool Sema::CheckExceptionSpecSubset(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Superset, SourceLocation SuperLoc,
const FunctionProtoType *Subset, SourceLocation SubLoc) {
// FIXME: As usual, we could be more specific in our error messages, but
// that better waits until we've got types with source locations.
if (!SubLoc.isValid())
SubLoc = SuperLoc;
// If superset contains everything, we're done.
if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
// It does not. If the subset contains everything, we've failed.
if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
Diag(SubLoc, DiagID);
if (NoteID.getDiagID() != 0)
Diag(SuperLoc, NoteID);
return true;
}
// Neither contains everything. Do a proper comparison.
for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
// Take one type from the subset.
QualType CanonicalSubT = Context.getCanonicalType(*SubI);
// Unwrap pointers and references so that we can do checks within a class
// hierarchy. Don't unwrap member pointers; they don't have hierarchy
// conversions on the pointee.
bool SubIsPointer = false;
if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
CanonicalSubT = RefTy->getPointeeType();
if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
CanonicalSubT = PtrTy->getPointeeType();
SubIsPointer = true;
}
bool SubIsClass = CanonicalSubT->isRecordType();
CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
bool Contained = false;
// Make sure it's in the superset.
for (FunctionProtoType::exception_iterator SuperI =
Superset->exception_begin(), SuperE = Superset->exception_end();
SuperI != SuperE; ++SuperI) {
QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
// SubT must be SuperT or derived from it, or pointer or reference to
// such types.
if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
CanonicalSuperT = RefTy->getPointeeType();
if (SubIsPointer) {
if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
CanonicalSuperT = PtrTy->getPointeeType();
else {
continue;
}
}
CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
// If the types are the same, move on to the next type in the subset.
if (CanonicalSubT == CanonicalSuperT) {
Contained = true;
break;
}
// Otherwise we need to check the inheritance.
if (!SubIsClass || !CanonicalSuperT->isRecordType())
continue;
Paths.clear();
if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
continue;
if (Paths.isAmbiguous(CanonicalSuperT))
continue;
// Do this check from a context without privileges.
switch (CheckBaseClassAccess(SourceLocation(), false,
CanonicalSuperT, CanonicalSubT,
Paths.front(),
/*ForceCheck*/ true,
/*ForceUnprivileged*/ true,
ADK_quiet)) {
case AR_accessible: break;
case AR_inaccessible: continue;
case AR_dependent:
llvm_unreachable("access check dependent for unprivileged context");
break;
case AR_delayed:
llvm_unreachable("access check delayed in non-declaration");
break;
}
Contained = true;
break;
//.........这里部分代码省略.........