当前位置: 首页>>代码示例>>C++>>正文


C++ QualType::getPointeeType方法代码示例

本文整理汇总了C++中QualType::getPointeeType方法的典型用法代码示例。如果您正苦于以下问题:C++ QualType::getPointeeType方法的具体用法?C++ QualType::getPointeeType怎么用?C++ QualType::getPointeeType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在QualType的用法示例。


在下文中一共展示了QualType::getPointeeType方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: new

// access 2D memory array at given index
Expr *ASTTranslate::accessMem2DAt(DeclRefExpr *LHS, Expr *idx_x, Expr *idx_y) {
  QualType QT = LHS->getType();
  QualType QT2 = QT->getPointeeType()->getAsArrayTypeUnsafe()->getElementType();

  // mark image as being used within the kernel
  Kernel->setUsed(LHS->getNameInfo().getAsString());

  Expr *result = new (Ctx) ArraySubscriptExpr(createImplicitCastExpr(Ctx, QT,
        CK_LValueToRValue, LHS, nullptr, VK_RValue), idx_y,
        QT->getPointeeType(), VK_LValue, OK_Ordinary, SourceLocation());

  result = new (Ctx) ArraySubscriptExpr(createImplicitCastExpr(Ctx,
        Ctx.getPointerType(QT2), CK_ArrayToPointerDecay, result, nullptr,
        VK_RValue), idx_x, QT2, VK_LValue, OK_Ordinary, SourceLocation());

  return result;
}
开发者ID:hipacc,项目名称:hipacc,代码行数:18,代码来源:MemoryAccess.cpp

示例2: evalDynamicCast

SVal StoreManager::evalDynamicCast(SVal Base, QualType DerivedType,
                                   bool &Failed) {
  Failed = false;

  loc::MemRegionVal *BaseRegVal = dyn_cast<loc::MemRegionVal>(&Base);
  if (!BaseRegVal)
    return UnknownVal();
  const MemRegion *BaseRegion = BaseRegVal->stripCasts(/*StripBases=*/false);

  // Assume the derived class is a pointer or a reference to a CXX record.
  DerivedType = DerivedType->getPointeeType();
  assert(!DerivedType.isNull());
  const CXXRecordDecl *DerivedDecl = DerivedType->getAsCXXRecordDecl();
  if (!DerivedDecl && !DerivedType->isVoidType())
    return UnknownVal();

  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
  // derived to base).
  const MemRegion *SR = BaseRegion;
  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
    QualType BaseType = TSR->getLocationType()->getPointeeType();
    assert(!BaseType.isNull());
    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
    if (!SRDecl)
      return UnknownVal();

    // If found the derived class, the cast succeeds.
    if (SRDecl == DerivedDecl)
      return loc::MemRegionVal(TSR);

    if (!DerivedType->isVoidType()) {
      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
      // only happen when multiple or virtual inheritance is involved.
      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
                         /*DetectVirtual=*/false);
      if (SRDecl->isDerivedFrom(DerivedDecl, Paths))
        return evalDerivedToBase(loc::MemRegionVal(TSR), Paths.front());
    }

    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
      // Drill down the chain to get the derived classes.
      SR = R->getSuperRegion();
    else {
      // We reached the bottom of the hierarchy.

      // If this is a cast to void*, return the region.
      if (DerivedType->isVoidType())
        return loc::MemRegionVal(TSR);

      // We did not find the derived class. We we must be casting the base to
      // derived, so the cast should fail.
      Failed = true;
      return UnknownVal();
    }
  }
  
  return UnknownVal();
}
开发者ID:C0deZLee,项目名称:IntFlow,代码行数:58,代码来源:Store.cpp

示例3: isPointerToConst

/// \brief Returns true if a type is a pointer-to-const or reference-to-const
/// with no further indirection.
static bool isPointerToConst(QualType Ty) {
  QualType PointeeTy = Ty->getPointeeType();
  if (PointeeTy == QualType())
    return false;
  if (!PointeeTy.isConstQualified())
    return false;
  if (PointeeTy->isAnyPointerType())
    return false;
  return true;
}
开发者ID:CTSRD-TESLA,项目名称:clang,代码行数:12,代码来源:Calls.cpp

示例4: isExprCallable

/// \brief Figure out if an expression could be turned into a call.
///
/// Use this when trying to recover from an error where the programmer may have
/// written just the name of a function instead of actually calling it.
///
/// \param E - The expression to examine.
/// \param ZeroArgCallReturnTy - If the expression can be turned into a call
///  with no arguments, this parameter is set to the type returned by such a
///  call; otherwise, it is set to an empty QualType.
/// \param NonTemplateOverloads - If the expression is an overloaded function
///  name, this parameter is populated with the decls of the various overloads.
bool Sema::isExprCallable(const Expr &E, QualType &ZeroArgCallReturnTy,
                          UnresolvedSetImpl &NonTemplateOverloads) {
  ZeroArgCallReturnTy = QualType();
  NonTemplateOverloads.clear();
  if (const OverloadExpr *Overloads = dyn_cast<OverloadExpr>(&E)) {
    for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
         DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
      // Our overload set may include TemplateDecls, which we'll ignore for our
      // present purpose.
      if (const FunctionDecl *OverloadDecl = dyn_cast<FunctionDecl>(*it)) {
        NonTemplateOverloads.addDecl(*it);
        if (OverloadDecl->getMinRequiredArguments() == 0)
          ZeroArgCallReturnTy = OverloadDecl->getResultType();
      }
    }
    return true;
  }

  if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(&E)) {
    if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
      if (Fun->getMinRequiredArguments() == 0)
        ZeroArgCallReturnTy = Fun->getResultType();
      return true;
    }
  }

  // We don't have an expression that's convenient to get a FunctionDecl from,
  // but we can at least check if the type is "function of 0 arguments".
  QualType ExprTy = E.getType();
  const FunctionType *FunTy = NULL;
  QualType PointeeTy = ExprTy->getPointeeType();
  if (!PointeeTy.isNull())
    FunTy = PointeeTy->getAs<FunctionType>();
  if (!FunTy)
    FunTy = ExprTy->getAs<FunctionType>();
  if (!FunTy && ExprTy == Context.BoundMemberTy) {
    // Look for the bound-member type.  If it's still overloaded, give up,
    // although we probably should have fallen into the OverloadExpr case above
    // if we actually have an overloaded bound member.
    QualType BoundMemberTy = Expr::findBoundMemberType(&E);
    if (!BoundMemberTy.isNull())
      FunTy = BoundMemberTy->castAs<FunctionType>();
  }

  if (const FunctionProtoType *FPT =
      dyn_cast_or_null<FunctionProtoType>(FunTy)) {
    if (FPT->getNumArgs() == 0)
      ZeroArgCallReturnTy = FunTy->getResultType();
    return true;
  }
  return false;
}
开发者ID:nolta,项目名称:cayley,代码行数:63,代码来源:Sema.cpp

示例5: assert

PathDiagnosticPiece *
UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N,
                                  const ExplodedNode *PrevN,
                                  BugReporterContext &BRC,
                                  BugReport &BR) {

  ProgramStateRef State = N->getState();
  ProgramPoint ProgLoc = N->getLocation();

  // We are only interested in visiting CallEnter nodes.
  Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
  if (!CEnter)
    return 0;

  // Check if one of the arguments is the region the visitor is tracking.
  CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
  CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
  unsigned Idx = 0;
  for (CallEvent::param_iterator I = Call->param_begin(),
                                 E = Call->param_end(); I != E; ++I, ++Idx) {
    const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();

    // Are we tracking the argument or its subregion?
    if ( !ArgReg || (ArgReg != R && !R->isSubRegionOf(ArgReg->StripCasts())))
      continue;

    // Check the function parameter type.
    const ParmVarDecl *ParamDecl = *I;
    assert(ParamDecl && "Formal parameter has no decl?");
    QualType T = ParamDecl->getType();

    if (!(T->isAnyPointerType() || T->isReferenceType())) {
      // Function can only change the value passed in by address.
      continue;
    }
    
    // If it is a const pointer value, the function does not intend to
    // change the value.
    if (T->getPointeeType().isConstQualified())
      continue;

    // Mark the call site (LocationContext) as interesting if the value of the 
    // argument is undefined or '0'/'NULL'.
    SVal BoundVal = State->getSVal(R);
    if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
      BR.markInteresting(CEnter->getCalleeContext());
      return 0;
    }
  }
  return 0;
}
开发者ID:Godin,项目名称:clang,代码行数:51,代码来源:BugReporterVisitors.cpp

示例6: IsFieldPointer

// Check if type is a "Field() *" pointer type, or alternatively a pointer to
// any type in "alt" if provided.
bool CheckAllocationsInFunctionVisitor::IsFieldPointer(
    const QualType& qtype, const char* alt)
{
    if (qtype->isPointerType())
    {
        auto name = qtype->getPointeeType()
            .getDesugaredType(_mainVisitor->getContext()).getAsString();
        return StartsWith(name, "class Memory::WriteBarrierPtr<")
            || StartsWith(name, "typename WriteBarrierFieldTypeTraits<")
            || (alt && strstr(alt, name.c_str()));
    }

    return false;
}
开发者ID:sunnyeo,项目名称:ChakraCore,代码行数:16,代码来源:RecyclerChecker.cpp

示例7: checkASTDecl

void edmChecker::checkASTDecl(const clang::CXXRecordDecl *RD, clang::ento::AnalysisManager& mgr,
                    clang::ento::BugReporter &BR) const {

	const clang::SourceManager &SM = BR.getSourceManager();
	clang::ento::PathDiagnosticLocation DLoc =clang::ento::PathDiagnosticLocation::createBegin( RD, SM );
	if (  !m_exception.reportClass( DLoc, BR ) ) return;
// Check the class methods (member methods).
	for (clang::CXXRecordDecl::method_iterator
		I = RD->method_begin(), E = RD->method_end(); I != E; ++I)  
	{      
		if ( !llvm::isa<clang::CXXMethodDecl>((*I)) ) continue;
		clang::CXXMethodDecl * MD = llvm::cast<clang::CXXMethodDecl>((*I));
			if ( MD->getNameAsString() == "beginRun" 
				|| MD->getNameAsString() == "endRun" 
				|| MD->getNameAsString() == "beginLuminosityBlock" 
				|| MD->getNameAsString() == "endLuminosityBlock" )
			{
//				llvm::errs()<<MD->getQualifiedNameAsString()<<"\n";	
				for (auto J=RD->bases_begin(), F=RD->bases_end();J != F; ++J)
					{  
					std::string name = J->getType()->castAs<RecordType>()->getDecl()->getQualifiedNameAsString();
//					llvm::errs()<<RD->getQualifiedNameAsString()<<"\n";	
//					llvm::errs() << "inherits from " <<name<<"\n";
					if (name=="edm::EDProducer" || name=="edm::EDFilter")
						{
						llvm::SmallString<100> buf;
						llvm::raw_svector_ostream os(buf);
						os << RD->getQualifiedNameAsString() << " inherits from edm::EDProducer or edm::EDFilter";
						os << "\n";
						llvm::errs()<<os.str();

						CXXMethodDecl::param_iterator I = MD->param_begin();
						ParmVarDecl * PVD = *(I);
						QualType PQT = PVD->getType();
						if ( PQT->isReferenceType() ) {
							QualType RQT = PQT->getPointeeType();
							if (RQT.isConstQualified()) continue;
						}
						clang::ento::PathDiagnosticLocation ELoc =clang::ento::PathDiagnosticLocation::createBegin( MD, SM );
						clang::SourceLocation SL = MD->getLocStart();
						BR.EmitBasicReport(MD, "Class Checker : inherits from edm::EDProducer or edm::EDFilter","optional",os.str(),ELoc,SL);
						}
					}
			}
	}
} //end of class
开发者ID:cms-cvs-history,项目名称:Utilities-StaticAnalyzers,代码行数:46,代码来源:edmChecker.cpp

示例8: PerformReturnAdjustment

static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
                                      QualType ResultType, RValue RV,
                                      const ThunkInfo &Thunk) {
  // Emit the return adjustment.
  bool NullCheckValue = !ResultType->isReferenceType();

  llvm::BasicBlock *AdjustNull = nullptr;
  llvm::BasicBlock *AdjustNotNull = nullptr;
  llvm::BasicBlock *AdjustEnd = nullptr;

  llvm::Value *ReturnValue = RV.getScalarVal();

  if (NullCheckValue) {
    AdjustNull = CGF.createBasicBlock("adjust.null");
    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
    AdjustEnd = CGF.createBasicBlock("adjust.end");

    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
    CGF.EmitBlock(AdjustNotNull);
  }

  auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
  auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
  ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
                                            Address(ReturnValue, ClassAlign),
                                            Thunk.Return);

  if (NullCheckValue) {
    CGF.Builder.CreateBr(AdjustEnd);
    CGF.EmitBlock(AdjustNull);
    CGF.Builder.CreateBr(AdjustEnd);
    CGF.EmitBlock(AdjustEnd);

    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
    PHI->addIncoming(ReturnValue, AdjustNotNull);
    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
                     AdjustNull);
    ReturnValue = PHI;
  }

  return RValue::get(ReturnValue);
}
开发者ID:bgabor666,项目名称:clang,代码行数:43,代码来源:CGVTables.cpp

示例9: isCallback

static bool isCallback(QualType T) {
  // If a parameter is a block or a callback, assume it can modify pointer.
  if (T->isBlockPointerType() ||
      T->isFunctionPointerType() ||
      T->isObjCSelType())
    return true;

  // Check if a callback is passed inside a struct (for both, struct passed by
  // reference and by value). Dig just one level into the struct for now.

  if (T->isAnyPointerType() || T->isReferenceType())
    T = T->getPointeeType();

  if (const RecordType *RT = T->getAsStructureType()) {
    const RecordDecl *RD = RT->getDecl();
    for (const auto *I : RD->fields()) {
      QualType FieldT = I->getType();
      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
        return true;
    }
  }
  return false;
}
开发者ID:2asoft,项目名称:freebsd,代码行数:23,代码来源:CallEvent.cpp

示例10:

Optional<SVal> GenericTaintChecker::getPointedToSVal(CheckerContext &C,
                                                     const Expr *Arg) {
  ProgramStateRef State = C.getState();
  SVal AddrVal = C.getSVal(Arg->IgnoreParens());
  if (AddrVal.isUnknownOrUndef())
    return None;

  Optional<Loc> AddrLoc = AddrVal.getAs<Loc>();
  if (!AddrLoc)
    return None;

  QualType ArgTy = Arg->getType().getCanonicalType();
  if (!ArgTy->isPointerType())
    return None;

  QualType ValTy = ArgTy->getPointeeType();

  // Do not dereference void pointers. Treat them as byte pointers instead.
  // FIXME: we might want to consider more than just the first byte.
  if (ValTy->isVoidType())
    ValTy = C.getASTContext().CharTy;

  return State->getSVal(*AddrLoc, ValTy);
}
开发者ID:Teemperor,项目名称:clang,代码行数:24,代码来源:GenericTaintChecker.cpp

示例11: attemptDownCast

SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
                                   bool &Failed) {
  Failed = false;

  const MemRegion *MR = Base.getAsRegion();
  if (!MR)
    return UnknownVal();

  // Assume the derived class is a pointer or a reference to a CXX record.
  TargetType = TargetType->getPointeeType();
  assert(!TargetType.isNull());
  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
  if (!TargetClass && !TargetType->isVoidType())
    return UnknownVal();

  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
  // derived to base).
  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
    // If found the derived class, the cast succeeds.
    if (MRClass == TargetClass)
      return loc::MemRegionVal(MR);

    // We skip over incomplete types. They must be the result of an earlier
    // reinterpret_cast, as one can only dynamic_cast between types in the same
    // class hierarchy.
    if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
      // only happen when multiple or virtual inheritance is involved.
      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
                         /*DetectVirtual=*/false);
      if (MRClass->isDerivedFrom(TargetClass, Paths))
        return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
    }

    if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
      // Drill down the chain to get the derived classes.
      MR = BaseR->getSuperRegion();
      continue;
    }

    // If this is a cast to void*, return the region.
    if (TargetType->isVoidType())
      return loc::MemRegionVal(MR);

    // Strange use of reinterpret_cast can give us paths we don't reason
    // about well, by putting in ElementRegions where we'd expect
    // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
    // derived class has a zero offset from the base class), then it's safe
    // to strip the cast; if it's invalid, -Wreinterpret-base-class should
    // catch it. In the interest of performance, the analyzer will silently
    // do the wrong thing in the invalid case (because offsets for subregions
    // will be wrong).
    const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
    if (Uncasted == MR) {
      // We reached the bottom of the hierarchy and did not find the derived
      // class. We must be casting the base to derived, so the cast should
      // fail.
      break;
    }

    MR = Uncasted;
  }

  // If we're casting a symbolic base pointer to a derived class, use
  // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
  // unrelated type, it must be a weird reinterpret_cast and we have to
  // be fine with ElementRegion. TODO: Should we instead make
  // Derived{TargetClass, Element{SourceClass, SR}}?
  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
    QualType T = SR->getSymbol()->getType();
    const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
    if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
      return loc::MemRegionVal(
          MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
    return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
  }

  // We failed if the region we ended up with has perfect type info.
  Failed = isa<TypedValueRegion>(MR);
  return UnknownVal();
}
开发者ID:FreeBSDFoundation,项目名称:freebsd,代码行数:81,代码来源:Store.cpp

示例12: checkOverridingFunctionReturnType

/// Checks whether the return types are covariant, according to
/// C++[class.virtual]p7.
///
/// Similar with clang::Sema::CheckOverridingFunctionReturnType.
/// \returns true if the return types of BaseMD and DerivedMD are covariant.
static bool checkOverridingFunctionReturnType(const ASTContext *Context,
                                              const CXXMethodDecl *BaseMD,
                                              const CXXMethodDecl *DerivedMD) {
  QualType BaseReturnTy = BaseMD->getType()
                              ->getAs<FunctionType>()
                              ->getReturnType()
                              .getCanonicalType();
  QualType DerivedReturnTy = DerivedMD->getType()
                                 ->getAs<FunctionType>()
                                 ->getReturnType()
                                 .getCanonicalType();

  if (DerivedReturnTy->isDependentType() || BaseReturnTy->isDependentType())
    return false;

  // Check if return types are identical.
  if (Context->hasSameType(DerivedReturnTy, BaseReturnTy))
    return true;

  /// Check if the return types are covariant.

  // Both types must be pointers or references to classes.
  if (!(BaseReturnTy->isPointerType() && DerivedReturnTy->isPointerType()) &&
      !(BaseReturnTy->isReferenceType() && DerivedReturnTy->isReferenceType()))
    return false;

  /// BTy is the class type in return type of BaseMD. For example,
  ///    B* Base::md()
  /// While BRD is the declaration of B.
  QualType DTy = DerivedReturnTy->getPointeeType().getCanonicalType();
  QualType BTy = BaseReturnTy->getPointeeType().getCanonicalType();

  const CXXRecordDecl *DRD = DTy->getAsCXXRecordDecl();
  const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
  if (DRD == nullptr || BRD == nullptr)
    return false;

  if (!DRD->hasDefinition() || !BRD->hasDefinition())
    return false;

  if (DRD == BRD)
    return true;

  if (!Context->hasSameUnqualifiedType(DTy, BTy)) {
    // Begin checking whether the conversion from D to B is valid.
    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
                       /*DetectVirtual=*/false);

    // Check whether D is derived from B, and fill in a CXXBasePaths object.
    if (!DRD->isDerivedFrom(BRD, Paths))
      return false;

    // Check ambiguity.
    if (Paths.isAmbiguous(Context->getCanonicalType(BTy).getUnqualifiedType()))
      return false;

    // Check accessibility.
    // FIXME: We currently only support checking if B is accessible base class
    // of D, or D is the same class which DerivedMD is in.
    bool IsItself =
        DRD->getCanonicalDecl() == DerivedMD->getParent()->getCanonicalDecl();
    bool HasPublicAccess = false;
    for (const auto &Path : Paths) {
      if (Path.Access == AS_public)
        HasPublicAccess = true;
    }
    if (!HasPublicAccess && !IsItself)
      return false;
    // End checking conversion from D to B.
  }

  // Both pointers or references should have the same cv-qualification.
  if (DerivedReturnTy.getLocalCVRQualifiers() !=
      BaseReturnTy.getLocalCVRQualifiers())
    return false;

  // The class type D should have the same cv-qualification as or less
  // cv-qualification than the class type B.
  if (DTy.isMoreQualifiedThan(BTy))
    return false;

  return true;
}
开发者ID:primitivorm,项目名称:clang-tools-extra,代码行数:88,代码来源:VirtualNearMissCheck.cpp

示例13: fixType

bool PrintfSpecifier::fixType(QualType QT, const LangOptions &LangOpt,
                              ASTContext &Ctx, bool IsObjCLiteral) {
  // %n is different from other conversion specifiers; don't try to fix it.
  if (CS.getKind() == ConversionSpecifier::nArg)
    return false;

  // Handle Objective-C objects first. Note that while the '%@' specifier will
  // not warn for structure pointer or void pointer arguments (because that's
  // how CoreFoundation objects are implemented), we only show a fixit for '%@'
  // if we know it's an object (block, id, class, or __attribute__((NSObject))).
  if (QT->isObjCRetainableType()) {
    if (!IsObjCLiteral)
      return false;

    CS.setKind(ConversionSpecifier::ObjCObjArg);

    // Disable irrelevant flags
    HasThousandsGrouping = false;
    HasPlusPrefix = false;
    HasSpacePrefix = false;
    HasAlternativeForm = false;
    HasLeadingZeroes = false;
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    LM.setKind(LengthModifier::None);

    return true;
  }

  // Handle strings next (char *, wchar_t *)
  if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
    CS.setKind(ConversionSpecifier::sArg);

    // Disable irrelevant flags
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;

    // Set the long length modifier for wide characters
    if (QT->getPointeeType()->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);

    return true;
  }

  // If it's an enum, get its underlying type.
  if (const EnumType *ETy = QT->getAs<EnumType>())
    QT = ETy->getDecl()->getIntegerType();

  // We can only work with builtin types.
  const BuiltinType *BT = QT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Set length modifier
  switch (BT->getKind()) {
  case BuiltinType::Bool:
  case BuiltinType::WChar_U:
  case BuiltinType::WChar_S:
  case BuiltinType::Char16:
  case BuiltinType::Char32:
  case BuiltinType::UInt128:
  case BuiltinType::Int128:
  case BuiltinType::Half:
  case BuiltinType::Float128:
    // Various types which are non-trivial to correct.
    return false;

#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define SIGNED_TYPE(Id, SingletonId)
#define UNSIGNED_TYPE(Id, SingletonId)
#define FLOATING_TYPE(Id, SingletonId)
#define BUILTIN_TYPE(Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
    // Misc other stuff which doesn't make sense here.
    return false;

  case BuiltinType::UInt:
  case BuiltinType::Int:
  case BuiltinType::Float:
  case BuiltinType::Double:
    LM.setKind(LengthModifier::None);
    break;

  case BuiltinType::Char_U:
  case BuiltinType::UChar:
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    LM.setKind(LengthModifier::AsChar);
    break;

  case BuiltinType::Short:
  case BuiltinType::UShort:
    LM.setKind(LengthModifier::AsShort);
    break;

  case BuiltinType::Long:
//.........这里部分代码省略.........
开发者ID:Leedehai,项目名称:clang,代码行数:101,代码来源:PrintfFormatString.cpp

示例14: EmitAtomicExpr

RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
  QualType MemTy = AtomicTy;
  if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
    MemTy = AT->getValueType();
  CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
  uint64_t Size = sizeChars.getQuantity();
  CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
  unsigned Align = alignChars.getQuantity();
  unsigned MaxInlineWidthInBits =
    getTarget().getMaxAtomicInlineWidth();
  bool UseLibcall = (Size != Align ||
                     getContext().toBits(sizeChars) > MaxInlineWidthInBits);

  llvm::Value *IsWeak = nullptr, *OrderFail = nullptr, *Val1 = nullptr,
              *Val2 = nullptr;
  llvm::Value *Ptr = EmitScalarExpr(E->getPtr());

  if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
    assert(!Dest && "Init does not return a value");
    LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
    EmitAtomicInit(E->getVal1(), lvalue);
    return RValue::get(nullptr);
  }

  llvm::Value *Order = EmitScalarExpr(E->getOrder());

  switch (E->getOp()) {
  case AtomicExpr::AO__c11_atomic_init:
    llvm_unreachable("Already handled!");

  case AtomicExpr::AO__c11_atomic_load:
  case AtomicExpr::AO__atomic_load_n:
    break;

  case AtomicExpr::AO__atomic_load:
    Dest = EmitScalarExpr(E->getVal1());
    break;

  case AtomicExpr::AO__atomic_store:
    Val1 = EmitScalarExpr(E->getVal1());
    break;

  case AtomicExpr::AO__atomic_exchange:
    Val1 = EmitScalarExpr(E->getVal1());
    Dest = EmitScalarExpr(E->getVal2());
    break;

  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
  case AtomicExpr::AO__atomic_compare_exchange_n:
  case AtomicExpr::AO__atomic_compare_exchange:
    Val1 = EmitScalarExpr(E->getVal1());
    if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
      Val2 = EmitScalarExpr(E->getVal2());
    else
      Val2 = EmitValToTemp(*this, E->getVal2());
    OrderFail = EmitScalarExpr(E->getOrderFail());
    if (E->getNumSubExprs() == 6)
      IsWeak = EmitScalarExpr(E->getWeak());
    break;

  case AtomicExpr::AO__c11_atomic_fetch_add:
  case AtomicExpr::AO__c11_atomic_fetch_sub:
    if (MemTy->isPointerType()) {
      // For pointer arithmetic, we're required to do a bit of math:
      // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
      // ... but only for the C11 builtins. The GNU builtins expect the
      // user to multiply by sizeof(T).
      QualType Val1Ty = E->getVal1()->getType();
      llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
      CharUnits PointeeIncAmt =
          getContext().getTypeSizeInChars(MemTy->getPointeeType());
      Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
      Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
      EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
      break;
    }
    // Fall through.
  case AtomicExpr::AO__atomic_fetch_add:
  case AtomicExpr::AO__atomic_fetch_sub:
  case AtomicExpr::AO__atomic_add_fetch:
  case AtomicExpr::AO__atomic_sub_fetch:
  case AtomicExpr::AO__c11_atomic_store:
  case AtomicExpr::AO__c11_atomic_exchange:
  case AtomicExpr::AO__atomic_store_n:
  case AtomicExpr::AO__atomic_exchange_n:
  case AtomicExpr::AO__c11_atomic_fetch_and:
  case AtomicExpr::AO__c11_atomic_fetch_or:
  case AtomicExpr::AO__c11_atomic_fetch_xor:
  case AtomicExpr::AO__atomic_fetch_and:
  case AtomicExpr::AO__atomic_fetch_or:
  case AtomicExpr::AO__atomic_fetch_xor:
  case AtomicExpr::AO__atomic_fetch_nand:
  case AtomicExpr::AO__atomic_and_fetch:
  case AtomicExpr::AO__atomic_or_fetch:
  case AtomicExpr::AO__atomic_xor_fetch:
  case AtomicExpr::AO__atomic_nand_fetch:
    Val1 = EmitValToTemp(*this, E->getVal1());
    break;
//.........这里部分代码省略.........
开发者ID:Henauxg,项目名称:minix,代码行数:101,代码来源:CGAtomic.cpp

示例15: printAttributed

void TypePrinter::printAttributed(const AttributedType *T,
                                  std::string &S) {
  // Prefer the macro forms of the GC and ownership qualifiers.
  if (T->getAttrKind() == AttributedType::attr_objc_gc ||
      T->getAttrKind() == AttributedType::attr_objc_ownership)
    return print(T->getEquivalentType(), S);

  print(T->getModifiedType(), S);

  // TODO: not all attributes are GCC-style attributes.
  S += " __attribute__((";
  switch (T->getAttrKind()) {
  case AttributedType::attr_address_space:
    S += "address_space(";
    S += T->getEquivalentType().getAddressSpace();
    S += ")";
    break;

  case AttributedType::attr_vector_size: {
    S += "__vector_size__(";
    if (const VectorType *vector =T->getEquivalentType()->getAs<VectorType>()) {
      S += vector->getNumElements();
      S += " * sizeof(";

      std::string tmp;
      print(vector->getElementType(), tmp);
      S += tmp;
      S += ")";
    }
    S += ")";
    break;
  }

  case AttributedType::attr_neon_vector_type:
  case AttributedType::attr_neon_polyvector_type: {
    if (T->getAttrKind() == AttributedType::attr_neon_vector_type)
      S += "neon_vector_type(";
    else
      S += "neon_polyvector_type(";
    const VectorType *vector = T->getEquivalentType()->getAs<VectorType>();
    S += llvm::utostr_32(vector->getNumElements());
    S += ")";
    break;
  }

  case AttributedType::attr_regparm: {
    S += "regparm(";
    QualType t = T->getEquivalentType();
    while (!t->isFunctionType())
      t = t->getPointeeType();
    S += t->getAs<FunctionType>()->getRegParmType();
    S += ")";
    break;
  }

  case AttributedType::attr_objc_gc: {
    S += "objc_gc(";

    QualType tmp = T->getEquivalentType();
    while (tmp.getObjCGCAttr() == Qualifiers::GCNone) {
      QualType next = tmp->getPointeeType();
      if (next == tmp) break;
      tmp = next;
    }

    if (tmp.isObjCGCWeak())
      S += "weak";
    else
      S += "strong";
    S += ")";
    break;
  }

  case AttributedType::attr_objc_ownership:
    S += "objc_ownership(";
    switch (T->getEquivalentType().getObjCLifetime()) {
    case Qualifiers::OCL_None: llvm_unreachable("no ownership!"); break;
    case Qualifiers::OCL_ExplicitNone: S += "none"; break;
    case Qualifiers::OCL_Strong: S += "strong"; break;
    case Qualifiers::OCL_Weak: S += "weak"; break;
    case Qualifiers::OCL_Autoreleasing: S += "autoreleasing"; break;
    }
    S += ")";
    break;

  case AttributedType::attr_noreturn: S += "noreturn"; break;
  case AttributedType::attr_cdecl: S += "cdecl"; break;
  case AttributedType::attr_fastcall: S += "fastcall"; break;
  case AttributedType::attr_stdcall: S += "stdcall"; break;
  case AttributedType::attr_thiscall: S += "thiscall"; break;
  case AttributedType::attr_pascal: S += "pascal"; break;
  case AttributedType::attr_pcs: {
   S += "pcs(";
   QualType t = T->getEquivalentType();
   while (!t->isFunctionType())
     t = t->getPointeeType();
   S += (t->getAs<FunctionType>()->getCallConv() == CC_AAPCS ?
         "\"aapcs\"" : "\"aapcs-vfp\"");
   S += ")";
   break;
//.........这里部分代码省略.........
开发者ID:Bootz,项目名称:multicore-opimization,代码行数:101,代码来源:TypePrinter.cpp


注:本文中的QualType::getPointeeType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。