当前位置: 首页>>代码示例>>C++>>正文


C++ ModelConfig::SetPdf方法代码示例

本文整理汇总了C++中ModelConfig::SetPdf方法的典型用法代码示例。如果您正苦于以下问题:C++ ModelConfig::SetPdf方法的具体用法?C++ ModelConfig::SetPdf怎么用?C++ ModelConfig::SetPdf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ModelConfig的用法示例。


在下文中一共展示了ModelConfig::SetPdf方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: upper_limit_Bayesian_MCMC

void upper_limit_Bayesian_MCMC(Model* model,double confidence,int Niters){
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  cout<<"Calculating upper limit with the MCMC method"<<endl;
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  
  RooWorkspace* wspace = new RooWorkspace("wspace");
  ModelConfig* modelConfig = new ModelConfig("bayes");
  modelConfig->SetWorkspace(*wspace);
  modelConfig->SetPdf(*model->get_complete_likelihood());
  modelConfig->SetPriorPdf(*model->get_POI_prior());
  modelConfig->SetParametersOfInterest(*model->get_POI_set());
  //  modelConfig->SetNuisanceParameters();
  modelConfig->SetNuisanceParameters(*model->get_nuisance_set());


  //configure the calculator
  //model->Print();

  cout<<" POI size "<<model->get_POI_set()->getSize()<<endl; 
  RooRealVar* firstPOI = (RooRealVar*) modelConfig->GetParametersOfInterest()->first();


  MCMCCalculator mcmccalc(*model->get_data(), *modelConfig );
  mcmccalc.SetTestSize(1-confidence);
  mcmccalc.SetLeftSideTailFraction(0);
  mcmccalc.SetNumIters(Niters);
  MCMCInterval* interval = mcmccalc.GetInterval();
  double ul = interval->UpperLimit(*firstPOI);
  cout<<"UpperLimit: "<<ul<<endl;

}
开发者ID:fratnikov,项目名称:SusyAnalysisRA7,代码行数:31,代码来源:main_program.C

示例2: upper_limit_FC

double upper_limit_FC(Model* model,double confidence){
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  cout<<"Calculating upper limit with the FC method"<<endl;
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  
  RooWorkspace* wspace = new RooWorkspace("wspace");

  ModelConfig* modelConfig = new ModelConfig("FC");
  modelConfig->SetWorkspace(*wspace);
  modelConfig->SetPdf(*model->get_complete_likelihood());
  modelConfig->SetPriorPdf(*model->get_POI_prior());
  modelConfig->SetParametersOfInterest(*model->get_POI_set());
  //modelConfig->SetParametersOfInterest(*wspace->set("poi"));
  //modelConfig->SetNuisanceParameters(*wspace->set("nuis"));
  // modelConfig->SetNuisanceParameters();
  modelConfig->SetNuisanceParameters(*model->get_nuisance_set());

  RooDataSet* data = model->get_data();
  RooArgSet* poi= model->get_POI_set();
  //configure the calculator
  //model->Print();



  cout<<" POI size "<<model->get_POI_set()->getSize()<<endl; 

  // use FeldmaCousins (takes ~20 min)  
  FeldmanCousins fc(*data, *modelConfig);
  fc.SetConfidenceLevel(0.95); //0.9 central limit=0.95 upper limit
  //fc.SetTestSize(.1); // set size of test
  //number counting: dataset always has 1 entry with N events observed
  fc.FluctuateNumDataEntries(false); 
  fc.UseAdaptiveSampling(true);

  fc.SetNBins(200);
  PointSetInterval* fcInt = NULL;
  //ConfInterval* interval = 0;


  RooRealVar* firstPOI = (RooRealVar*) modelConfig->GetParametersOfInterest()->first();

  //  if(doFeldmanCousins){ // takes 7 minutes
  fcInt = (PointSetInterval*) fc.GetInterval(); // fix cast
  //xs}
  //interval = (PointSetInterval*) fc.GetInterval();

  cout<<" ["<<fcInt->LowerLimit( *firstPOI ) << ", " <<
  fcInt->UpperLimit( *firstPOI ) << "]" << endl;
  cout<<" ["<<fcInt->LowerLimit( *firstPOI ) << ", " <<
  fcInt->UpperLimit( *firstPOI ) << "]" << endl;
    
  double ul=fcInt->UpperLimit( *firstPOI );
  //double ul=interval->UpperLimit( *firstPOI );
  return ul;
}
开发者ID:fratnikov,项目名称:SusyAnalysisRA7,代码行数:55,代码来源:main_program.C

示例3: DoHypothesisTest

//____________________________________
void DoHypothesisTest(RooWorkspace* wks){


  // Use a RooStats ProfileLikleihoodCalculator to do the hypothesis test.
  ModelConfig model;
  model.SetWorkspace(*wks);
  model.SetPdf("model");

  //plc.SetData("data");

  ProfileLikelihoodCalculator plc;
  plc.SetData( *(wks->data("data") ));

  // here we explicitly set the value of the parameters for the null.
  // We want no signal contribution, eg. mu = 0
  RooRealVar* mu = wks->var("mu");
//   RooArgSet* nullParams = new RooArgSet("nullParams");
//   nullParams->addClone(*mu);
  RooArgSet poi(*mu);
  RooArgSet * nullParams = (RooArgSet*) poi.snapshot();
  nullParams->setRealValue("mu",0);


  //plc.SetNullParameters(*nullParams);
  plc.SetModel(model);
  // NOTE: using snapshot will import nullparams
  // in the WS and merge with existing "mu"
  // model.SetSnapshot(*nullParams);

  //use instead setNuisanceParameters
  plc.SetNullParameters( *nullParams);



  // We get a HypoTestResult out of the calculator, and we can query it.
  HypoTestResult* htr = plc.GetHypoTest();
  cout << "-------------------------------------------------" << endl;
  cout << "The p-value for the null is " << htr->NullPValue() << endl;
  cout << "Corresponding to a signifcance of " << htr->Significance() << endl;
  cout << "-------------------------------------------------\n\n" << endl;


}
开发者ID:clelange,项目名称:roostats,代码行数:44,代码来源:rs102_hypotestwithshapes.C

示例4: upper_limit_Bayesian

void upper_limit_Bayesian(Model* model,double confidence){
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  cout<<"Calculating upper limit with the Bayesian method"<<endl;
  cout<<"///////////////////////////////////////////////////////////////////////////////////////////"<<endl;
  
  RooWorkspace* wspace = new RooWorkspace("wspace");
  ModelConfig* modelConfig = new ModelConfig("bayes");
  modelConfig->SetWorkspace(*wspace);
  modelConfig->SetPdf(*model->get_complete_likelihood());
  modelConfig->SetPriorPdf(*model->get_POI_prior());
  modelConfig->SetParametersOfInterest(*model->get_POI_set());
  //modelConfig->SetNuisanceParameters(*model->get_nuisance_set());



  //configure the calculator
  //model->Print();

  cout<<" POI size "<<model->get_POI_set()->getSize()<<endl; 
  BayesianCalculator bcalc(*model->get_data(), *modelConfig);
  //BayesianCalculator bcalc(*model->get_data(),*model->get_complete_likelihood(),*model->get_POI_set(),*model->get_POI_prior(),model->get_nuisance_set());
  //BayesianCalculator bcalc(*model->get_data(),*model->get_complete_likelihood(),*model->get_POI_set(),*model->get_POI_prior(),0);
 

  bcalc.SetLeftSideTailFraction(0); //for upper limit

  //get the interval
  bcalc.SetConfidenceLevel(confidence);
  cout<<"Calculating"<<endl;
  SimpleInterval* interval = bcalc.GetInterval();
  double ul=interval->UpperLimit();
  std::cout <<confidence <<"% CL upper limit: "<< ul<<endl;

  TCanvas *c1=new TCanvas;
  bcalc.SetScanOfPosterior(100);
  RooPlot * plot = bcalc.GetPosteriorPlot();
  plot->Draw(); 
  c1->SaveAs("bayesian_PosteriorPlot.png");

}
开发者ID:fratnikov,项目名称:SusyAnalysisRA7,代码行数:40,代码来源:main_program.C

示例5: workspace_preparer


//.........这里部分代码省略.........
    newworkspace->var("nom_rho")->setConstant();

    //Set Parameters of interest
    RooArgSet poi(*newworkspace->var("sigma"), "poi");


    //Set Nuisnaces

    RooArgSet nuis(*newworkspace->var("prime_lumi"), *newworkspace->var("prime_eff"), *newworkspace->var("prime_rho"), *newworkspace->var("bprime"));

    // priors (for Bayesian calculation)
    newworkspace->factory("Uniform::prior_signal(sigma)"); // for parameter of interest
    newworkspace->factory("Uniform::prior_bg_b(bprime)"); // for data driven nuisance parameter
    newworkspace->factory("PROD::prior(prior_signal,prior_bg_b)"); // total prior


    //Observed data is pulled from histogram.
    //TFile *data_file = new TFile(data_file_name);
    TFile *data_file = new TFile(data_file_name);
    TH2D *data_hist = (TH2D *)data_file->Get(data_hist_name_in_file);
    RooDataHist *pData = new RooDataHist("data", "data", obs, data_hist);
    newworkspace->import(*pData);

    // Now, we will draw our data from a RooDataHist.
    /*TFile *data_file = new TFile(data_file_name);
    TTree *data_tree = (TTree *) data_file->Get(data_hist_name_in_file);
    RooDataSet *pData = new RooDataSet("data", "data", data_tree, obs);
    newworkspace->import(*pData);*/


    // Craft the signal+background model
    ModelConfig * pSbModel = new ModelConfig("SbModel");
    pSbModel->SetWorkspace(*newworkspace);
    pSbModel->SetPdf(*newworkspace->pdf("model"));
    pSbModel->SetPriorPdf(*newworkspace->pdf("prior"));
    pSbModel->SetParametersOfInterest(poi);
    pSbModel->SetNuisanceParameters(nuis);
    pSbModel->SetObservables(obs);
    pSbModel->SetGlobalObservables(globalObs);

    // set all but obs, poi and nuisance to const
    SetConstants(newworkspace, pSbModel);
    newworkspace->import(*pSbModel);


    // background-only model
    // use the same PDF as s+b, with sig=0
    // POI value under the background hypothesis
    // (We will set the value to 0 later)

    Double_t poiValueForBModel = 0.0;
    ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)newworkspace->obj("SbModel"));
    pBModel->SetName("BModel");
    pBModel->SetWorkspace(*newworkspace);
    newworkspace->import(*pBModel);

    // find global maximum with the signal+background model
    // with conditional MLEs for nuisance parameters
    // and save the parameter point snapshot in the Workspace
    //  - safer to keep a default name because some RooStats calculators
    //    will anticipate it
    RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*pData);
    RooAbsReal * pProfile = pNll->createProfile(RooArgSet());
    pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
    RooArgSet * pPoiAndNuisance = new RooArgSet();
    if(pSbModel->GetNuisanceParameters())
开发者ID:maxhorton,项目名称:cls_calculator,代码行数:67,代码来源:workspace_preparer.C

示例6: TwoBinInstructional

// implementation
void TwoBinInstructional( void ){
  
  // let's time this example
  TStopwatch t;
  t.Start();

  // set RooFit random seed for reproducible results
  RooRandom::randomGenerator()->SetSeed(4357);

  // make model
  RooWorkspace * pWs = new RooWorkspace("ws");

  // derived from data
  pWs->factory("xsec[0.2,0,2]"); // POI
  pWs->factory("bg_b[10,0,50]");    // data driven nuisance

  // predefined nuisances
  pWs->factory("lumi[100,0,1000]");
  pWs->factory("eff_a[0.2,0,1]");
  pWs->factory("eff_b[0.05,0,1]");
  pWs->factory("tau[0,1]");
  pWs->factory("xsec_bg_a[0.05]"); // constant
  pWs->var("xsec_bg_a")->setConstant(1);

  // channel a (signal): lumi*xsec*eff_a + lumi*bg_a + tau*bg_b
  pWs->factory("prod::sig_a(lumi,xsec,eff_a)");
  pWs->factory("prod::bg_a(lumi,xsec_bg_a)");
  pWs->factory("prod::tau_bg_b(tau, bg_b)");
  pWs->factory("Poisson::pdf_a(na[14,0,100],sum::mu_a(sig_a,bg_a,tau_bg_b))");

  // channel b (control): lumi*xsec*eff_b + bg_b
  pWs->factory("prod::sig_b(lumi,xsec,eff_b)");
  pWs->factory("Poisson::pdf_b(nb[11,0,100],sum::mu_b(sig_b,bg_b))");

  // nuisance constraint terms (systematics)
  pWs->factory("Lognormal::l_lumi(lumi,nom_lumi[100,0,1000],sum::kappa_lumi(1,d_lumi[0.1]))");
  pWs->factory("Lognormal::l_eff_a(eff_a,nom_eff_a[0.20,0,1],sum::kappa_eff_a(1,d_eff_a[0.05]))");
  pWs->factory("Lognormal::l_eff_b(eff_b,nom_eff_b[0.05,0,1],sum::kappa_eff_b(1,d_eff_b[0.05]))");
  pWs->factory("Lognormal::l_tau(tau,nom_tau[0.50,0,1],sum::kappa_tau(1,d_tau[0.05]))");
  //pWs->factory("Lognormal::l_bg_a(bg_a,nom_bg_a[0.05,0,1],sum::kappa_bg_a(1,d_bg_a[0.10]))");

  // complete model PDF
  pWs->factory("PROD::model(pdf_a,pdf_b,l_lumi,l_eff_a,l_eff_b,l_tau)");

  // Now create sets of variables. Note that we could use the factory to
  // create sets but in that case many of the sets would be duplicated
  // when the ModelConfig objects are imported into the workspace. So,
  // we create the sets outside the workspace, and only the needed ones
  // will be automatically imported by ModelConfigs

  // observables
  RooArgSet obs(*pWs->var("na"), *pWs->var("nb"), "obs");

  // global observables
  RooArgSet globalObs(*pWs->var("nom_lumi"), *pWs->var("nom_eff_a"), *pWs->var("nom_eff_b"), 
		      *pWs->var("nom_tau"),
		      "global_obs");

  // parameters of interest
  RooArgSet poi(*pWs->var("xsec"), "poi");

  // nuisance parameters
  RooArgSet nuis(*pWs->var("lumi"), *pWs->var("eff_a"), *pWs->var("eff_b"), *pWs->var("tau"), "nuis");

  // priors (for Bayesian calculation)
  pWs->factory("Uniform::prior_xsec(xsec)"); // for parameter of interest
  pWs->factory("Uniform::prior_bg_b(bg_b)"); // for data driven nuisance parameter
  pWs->factory("PROD::prior(prior_xsec,prior_bg_b)"); // total prior

  // create data
  pWs->var("na")->setVal(14);
  pWs->var("nb")->setVal(11);
  RooDataSet * pData = new RooDataSet("data","",obs);
  pData->add(obs);
  pWs->import(*pData);
  //pData->Print();

  // signal+background model
  ModelConfig * pSbModel = new ModelConfig("SbModel");
  pSbModel->SetWorkspace(*pWs);
  pSbModel->SetPdf(*pWs->pdf("model"));
  pSbModel->SetPriorPdf(*pWs->pdf("prior"));
  pSbModel->SetParametersOfInterest(poi);
  pSbModel->SetNuisanceParameters(nuis);
  pSbModel->SetObservables(obs);
  pSbModel->SetGlobalObservables(globalObs);

  // set all but obs, poi and nuisance to const
  SetConstants(pWs, pSbModel);
  pWs->import(*pSbModel);


  // background-only model
  // use the same PDF as s+b, with xsec=0
  // POI value under the background hypothesis
  Double_t poiValueForBModel = 0.0;
  ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)pWs->obj("SbModel"));
  pBModel->SetName("BModel");
  pBModel->SetWorkspace(*pWs);
//.........这里部分代码省略.........
开发者ID:SiewYan,项目名称:MonoJetAnalysis,代码行数:101,代码来源:roostats_twobin.C

示例7: IntervalExamples

void IntervalExamples()
{

   // Time this macro
   TStopwatch t;
   t.Start();


   // set RooFit random seed for reproducible results
   RooRandom::randomGenerator()->SetSeed(3001);

   // make a simple model via the workspace factory
   RooWorkspace* wspace = new RooWorkspace();
   wspace->factory("Gaussian::normal(x[-10,10],mu[-1,1],sigma[1])");
   wspace->defineSet("poi","mu");
   wspace->defineSet("obs","x");

   // specify components of model for statistical tools
   ModelConfig* modelConfig = new ModelConfig("Example G(x|mu,1)");
   modelConfig->SetWorkspace(*wspace);
   modelConfig->SetPdf( *wspace->pdf("normal") );
   modelConfig->SetParametersOfInterest( *wspace->set("poi") );
   modelConfig->SetObservables( *wspace->set("obs") );

   // create a toy dataset
   RooDataSet* data = wspace->pdf("normal")->generate(*wspace->set("obs"),100);
   data->Print();

   // for convenience later on
   RooRealVar* x = wspace->var("x");
   RooRealVar* mu = wspace->var("mu");

   // set confidence level
   double confidenceLevel = 0.95;

   // example use profile likelihood calculator
   ProfileLikelihoodCalculator plc(*data, *modelConfig);
   plc.SetConfidenceLevel( confidenceLevel);
   LikelihoodInterval* plInt = plc.GetInterval();

   // example use of Feldman-Cousins
   FeldmanCousins fc(*data, *modelConfig);
   fc.SetConfidenceLevel( confidenceLevel);
   fc.SetNBins(100); // number of points to test per parameter
   fc.UseAdaptiveSampling(true); // make it go faster

   // Here, we consider only ensembles with 100 events
   // The PDF could be extended and this could be removed
   fc.FluctuateNumDataEntries(false);

   // Proof
   //  ProofConfig pc(*wspace, 4, "workers=4", kFALSE);    // proof-lite
   //ProofConfig pc(w, 8, "localhost");    // proof cluster at "localhost"
   //  ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
   //  toymcsampler->SetProofConfig(&pc);     // enable proof

   PointSetInterval* interval = (PointSetInterval*) fc.GetInterval();


   // example use of BayesianCalculator
   // now we also need to specify a prior in the ModelConfig
   wspace->factory("Uniform::prior(mu)");
   modelConfig->SetPriorPdf(*wspace->pdf("prior"));

   // example usage of BayesianCalculator
   BayesianCalculator bc(*data, *modelConfig);
   bc.SetConfidenceLevel( confidenceLevel);
   SimpleInterval* bcInt = bc.GetInterval();

   // example use of MCMCInterval
   MCMCCalculator mc(*data, *modelConfig);
   mc.SetConfidenceLevel( confidenceLevel);
   // special options
   mc.SetNumBins(200);        // bins used internally for representing posterior
   mc.SetNumBurnInSteps(500); // first N steps to be ignored as burn-in
   mc.SetNumIters(100000);    // how long to run chain
   mc.SetLeftSideTailFraction(0.5); // for central interval
   MCMCInterval* mcInt = mc.GetInterval();

   // for this example we know the expected intervals
   double expectedLL = data->mean(*x)
      + ROOT::Math::normal_quantile(  (1-confidenceLevel)/2,1)
      / sqrt(data->numEntries());
   double expectedUL = data->mean(*x)
      + ROOT::Math::normal_quantile_c((1-confidenceLevel)/2,1)
      / sqrt(data->numEntries()) ;

   // Use the intervals
   std::cout << "expected interval is [" <<
      expectedLL << ", " <<
      expectedUL << "]" << endl;

   cout << "plc interval is [" <<
      plInt->LowerLimit(*mu) << ", " <<
      plInt->UpperLimit(*mu) << "]" << endl;

   std::cout << "fc interval is ["<<
      interval->LowerLimit(*mu) << " , "  <<
      interval->UpperLimit(*mu) << "]" << endl;

//.........这里部分代码省略.........
开发者ID:Y--,项目名称:root,代码行数:101,代码来源:IntervalExamples.C

示例8: new_RA4

void new_RA4(){
  
  // let's time this challenging example
  TStopwatch t;
  t.Start();

  // set RooFit random seed for reproducible results
  RooRandom::randomGenerator()->SetSeed(4357);

  // make model
  RooWorkspace* wspace = new RooWorkspace("wspace");

  wspace->factory("Gaussian::sigCons(prime_SigEff[0,-5,5], nom_SigEff[0,-5,5], 1)");
  wspace->factory("expr::SigEff('1.0*pow(1.20,@0)',prime_SigEff)"); // // 1+-20%, 1.20=exp(20%)

  wspace->factory("Poisson::on(non[0,50], sum::splusb(prod::SigUnc(s[0,0,50],SigEff),mainb[8.8,0,50],dilep[0.9,0,20],tau[2.3,0,20],QCD[0.,0,10],MC[0.1,0,4]))");

  wspace->factory("Gaussian::mcCons(prime_rho[0,-5,5], nom_rho[0,-5,5], 1)");
  wspace->factory("expr::rho('1.0*pow(1.39,@0)',prime_rho)"); // // 1+-39%
  wspace->factory("Poisson::off(noff[0,200], prod::rhob(mainb,rho,mu_plus_e[0.74,0.01,10],1.08))");
  wspace->factory("Gaussian::mcCons2(mu_plus_enom[0.74,0.01,4], mu_plus_e, sigmatwo[.05])");

  wspace->factory("Gaussian::dilep_pred(dilep_nom[0.9,0,20], dilep, sigma3[2.2])");
  wspace->factory("Gaussian::tau_pred(tau_nom[2.3,0,20], tau, sigma4[0.5])");
  wspace->factory("Gaussian::QCD_pred(QCD_nom[0.0,0,10], QCD, sigma5[1.0])");
  wspace->factory("Gaussian::MC_pred(MC_nom[0.1,0.01,4], MC, sigma7[0.14])");

  wspace->factory("PROD::model(on,off,mcCons,mcCons2,sigCons,dilep_pred,tau_pred,QCD_pred,MC_pred)");

  RooArgSet obs(*wspace->var("non"), *wspace->var("noff"), *wspace->var("mu_plus_enom"), *wspace->var("dilep_nom"), *wspace->var("tau_nom"), "obs");
  obs.add(*wspace->var("QCD_nom"));  obs.add(*wspace->var("MC_nom"));
  RooArgSet globalObs(*wspace->var("nom_SigEff"), *wspace->var("nom_rho"), "global_obs");
  // fix global observables to their nominal values
  wspace->var("nom_SigEff")->setConstant();
  wspace->var("nom_rho")->setConstant();

  RooArgSet poi(*wspace->var("s"), "poi");
  RooArgSet nuis(*wspace->var("mainb"), *wspace->var("prime_rho"), *wspace->var("prime_SigEff"), *wspace->var("mu_plus_e"), *wspace->var("dilep"), *wspace->var("tau"), "nuis");
  nuis.add(*wspace->var("QCD"));  nuis.add(*wspace->var("MC"));


  wspace->factory("Uniform::prior_poi({s})");
  wspace->factory("Uniform::prior_nuis({mainb,mu_plus_e,dilep,tau,QCD,MC})");
  wspace->factory("PROD::prior(prior_poi,prior_nuis)");

  wspace->var("non")->setVal(8); //observed
  //wspace->var("non")->setVal(12); //expected observation
  wspace->var("noff")->setVal(7); //observed events in control region
  wspace->var("mu_plus_enom")->setVal(0.74);
  wspace->var("dilep_nom")->setVal(0.9);
  wspace->var("tau_nom")->setVal(2.3);
  wspace->var("QCD")->setVal(0.0);
  wspace->var("MC")->setVal(0.1);


  RooDataSet * data = new RooDataSet("data","",obs);
  data->add(obs);
  wspace->import(*data);


  /////////////////////////////////////////////////////
  // Now the statistical tests
  // model config
  ModelConfig* pSbModel = new ModelConfig("SbModel");
  pSbModel->SetWorkspace(*wspace);
  pSbModel->SetPdf(*wspace->pdf("model"));
  pSbModel->SetPriorPdf(*wspace->pdf("prior"));
  pSbModel->SetParametersOfInterest(poi);
  pSbModel->SetNuisanceParameters(nuis);
  pSbModel->SetObservables(obs);
  pSbModel->SetGlobalObservables(globalObs);
  wspace->import(*pSbModel);

  // set all but obs, poi and nuisance to const
  SetConstants(wspace, pSbModel);
  wspace->import(*pSbModel);


  Double_t poiValueForBModel = 0.0;
  ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)wspace->obj("SbModel"));
  pBModel->SetName("BModel");
  pBModel->SetWorkspace(*wspace);
  wspace->import(*pBModel);


  RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*data);
  RooAbsReal * pProfile = pNll->createProfile(RooArgSet());
  pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
  RooArgSet * pPoiAndNuisance = new RooArgSet();
  //if(pSbModel->GetNuisanceParameters())
  //  pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters());
  pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest());
  cout << "\nWill save these parameter points that correspond to the fit to data" << endl;
  pPoiAndNuisance->Print("v");
  pSbModel->SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;


//.........这里部分代码省略.........
开发者ID:pbgeff,项目名称:UserCode,代码行数:101,代码来源:create_tight.C

示例9: workspace


//.........这里部分代码省略.........

      pdflist.add( *allNuisancePdfs ) ;

      pdflist.Print() ;
      printf("\n") ;

      RooProdPdf* likelihood = new RooProdPdf( "likelihood", "hbb likelihood", pdflist ) ;
      likelihood->Print() ;


    //-------------------------------------------------------------------------


  //  printf("\n\n Running a test fit.\n\n") ;


  //  dsObserved -> Print() ;
  //  dsObserved -> printMultiline(cout, 1, kTRUE, "") ;


  //  printf("\n\n =============================================\n\n") ;
  //  likelihood -> fitTo( *dsObserved, PrintLevel(3), Hesse(0), Minos(0) ) ;
  //  printf("\n\n =============================================\n\n") ;







     //-- Set up RooStats models.

      printf("\n\n Setting up S+B model.\n\n") ;

      RooArgSet poi( *rv_sig_strength, "poi" ) ;
      RooUniform signal_prior( "signal_prior", "signal_prior", *rv_sig_strength ) ;

      ModelConfig sbModel ("SbModel");
      sbModel.SetWorkspace( workspace ) ;
      sbModel.SetPdf( *likelihood ) ;
      sbModel.SetParametersOfInterest( poi );
      sbModel.SetPriorPdf(signal_prior);
      sbModel.SetObservables( *observedParametersList );
      sbModel.SetNuisanceParameters( *allNuisances );
      sbModel.SetGlobalObservables( *globalObservables );

      workspace.Print() ;

      printf("\n\n Doing fit for S+B model.\n" ) ; fflush(stdout) ;

      RooAbsReal* pNll = sbModel.GetPdf()->createNLL(*dsObserved);
      RooAbsReal* pProfile = pNll->createProfile(RooArgSet());
      pProfile->getVal();
      RooArgSet* pPoiAndNuisance = new RooArgSet();
      pPoiAndNuisance->add(*sbModel.GetParametersOfInterest());
      if(sbModel.GetNuisanceParameters()) pPoiAndNuisance->add(*sbModel.GetNuisanceParameters());
      printf("\n\n Will save these parameter points that correspond to the fit to data.\n\n") ; fflush(stdout) ;
      pPoiAndNuisance->Print("v");
      sbModel.SetSnapshot(*pPoiAndNuisance);
      workspace.import (sbModel);

      delete pProfile ;
      delete pNll ;
      delete pPoiAndNuisance ;

      printf("\n\n Setting up BG-only model.\n\n") ;

      ModelConfig bModel (*(RooStats::ModelConfig *)workspace.obj("SbModel"));
      bModel.SetName("BModel");
      bModel.SetWorkspace(workspace);

      printf("\n\n Doing fit for BG-only model.\n" ) ; fflush(stdout) ;
      pNll = bModel.GetPdf()->createNLL(*dsObserved);
      pProfile = pNll->createProfile(*bModel.GetParametersOfInterest());
      ((RooRealVar *)(bModel.GetParametersOfInterest()->first()))->setVal(0.);
      pProfile->getVal();
      pPoiAndNuisance = new RooArgSet();
      pPoiAndNuisance->add(*bModel.GetParametersOfInterest());
      if(bModel.GetNuisanceParameters()) pPoiAndNuisance->add(*bModel.GetNuisanceParameters());
      printf("\n\n Should use these parameter points to generate pseudo data for bkg only.\n\n") ; fflush(stdout) ;
      pPoiAndNuisance->Print("v");
      bModel.SetSnapshot(*pPoiAndNuisance);
      workspace.import (bModel);

      delete pProfile ;
      delete pNll ;
      delete pPoiAndNuisance ;

      workspace.Print() ;

      printf("\n\n Saving workspace in : %s\n\n", outfile ) ;

      gSystem->Exec(" mkdir -p outputfiles " ) ;

      workspace.writeToFile( outfile ) ;




   } // build_hbb_workspace1.
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:build_hbb_workspace1.c

示例10: exercise_3

void exercise_3() {
  //Open the rootfile and get the workspace from the exercise_0
  TFile fIn("exercise_0.root");
  fIn.cd();
  RooWorkspace *w = (RooWorkspace*)fIn.Get("w");

  //You can set constant parameters that are known
  //If you leave them floating, the fit procedure will determine their uncertainty
  w->var("mean")->setConstant(kFALSE); //don't fix the mean, it's what we want to know the interval for!
  w->var("sigma")->setConstant(kTRUE);
  w->var("tau")->setConstant(kTRUE);
  w->var("Nsig")->setConstant(kTRUE);
  w->var("Nbkg")->setConstant(kTRUE);

  //Set the RooModelConfig and let it know what the content of the workspace is about
  ModelConfig model;
  model.SetWorkspace(*w);
  model.SetPdf("PDFtot");

  //Let the model know what is the parameter of interest
  RooRealVar* mean = w->var("mean");
  mean->setRange(120., 130.);   //this is mostly for plotting reasons
  RooArgSet poi(*mean);

  // set confidence level
  double confidenceLevel = 0.68;

  //Build the profile likelihood calculator
  ProfileLikelihoodCalculator plc; 
  plc.SetData(*(w->data("PDFtotData"))); 
  plc.SetModel(model);
  plc.SetParameters(poi);
  plc.SetConfidenceLevel(confidenceLevel);

  //Get the interval
  LikelihoodInterval* plInt = plc.GetInterval();

  //Now let's do the same for the Bayesian Calculator
  //Now we also need to specify a prior in the ModelConfig
  //To be quicker, we'll use the PDF factory facility of RooWorkspace
  //NB!! For simplicity, we are using a flat prior, but this doesn't mean it's the best choice!
  w->factory("Uniform::prior(mean)");
  model.SetPriorPdf(*w->pdf("prior"));

  //Construct the bayesian calculator
  BayesianCalculator bc(*(w->data("PDFtotData")), model);
  bc.SetConfidenceLevel(confidenceLevel);
  bc.SetParameters(poi);
  SimpleInterval* bcInt = bc.GetInterval();

  // Let's make a plot
  TCanvas dataCanvas("dataCanvas");
  dataCanvas.Divide(2,1);
  dataCanvas.cd(1);

  LikelihoodIntervalPlot plotInt((LikelihoodInterval*)plInt);
  plotInt.SetTitle("Profile Likelihood Ratio and Posterior for mH");
  plotInt.SetMaximum(3.);
  plotInt.Draw();

  dataCanvas.cd(2);
  RooPlot *bcPlot = bc.GetPosteriorPlot();
  bcPlot->Draw();

  dataCanvas.SaveAs("exercise_3.gif");

  //Now print the interval for mH for the two methods
  cout << "PLC interval is [" << plInt->LowerLimit(*mean) << ", " << 
    plInt->UpperLimit(*mean) << "]" << endl;

  cout << "Bayesian interval is [" << bcInt->LowerLimit() << ", " << 
    bcInt->UpperLimit() << "]" << endl;

}
开发者ID:hcwhwang,项目名称:macro,代码行数:74,代码来源:exercise_3.C


注:本文中的ModelConfig::SetPdf方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。