本文整理汇总了C++中ModelConfig::GetGlobalObservables方法的典型用法代码示例。如果您正苦于以下问题:C++ ModelConfig::GetGlobalObservables方法的具体用法?C++ ModelConfig::GetGlobalObservables怎么用?C++ ModelConfig::GetGlobalObservables使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ModelConfig
的用法示例。
在下文中一共展示了ModelConfig::GetGlobalObservables方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: slrts
//.........这里部分代码省略.........
if (!bModel || bModel == sbModel) {
Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
bModel = (ModelConfig*) sbModel->Clone();
bModel->SetName(TString(modelSBName)+TString("_with_poi_0"));
RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
if (!var) return 0;
double oldval = var->getVal();
var->setVal(0);
bModel->SetSnapshot( RooArgSet(*var) );
var->setVal(oldval);
}
else {
if (!bModel->GetSnapshot() ) {
Info("StandardHypoTestInvDemo","Model %s has no snapshot - make one using model poi and 0 values ",modelBName);
RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
if (var) {
double oldval = var->getVal();
var->setVal(0);
bModel->SetSnapshot( RooArgSet(*var) );
var->setVal(oldval);
}
else {
Error("StandardHypoTestInvDemo","Model %s has no valid poi",modelBName);
return 0;
}
}
}
// check model has global observables when there are nuisance pdf
// for the hybrid case the globobs are not needed
if (type != 1 ) {
bool hasNuisParam = (sbModel->GetNuisanceParameters() && sbModel->GetNuisanceParameters()->getSize() > 0);
bool hasGlobalObs = (sbModel->GetGlobalObservables() && sbModel->GetGlobalObservables()->getSize() > 0);
if (hasNuisParam && !hasGlobalObs ) {
// try to see if model has nuisance parameters first
RooAbsPdf * constrPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisanceConstraintPdf_sbmodel");
if (constrPdf) {
Warning("StandardHypoTestInvDemo","Model %s has nuisance parameters but no global observables associated",sbModel->GetName());
Warning("StandardHypoTestInvDemo","\tThe effect of the nuisance parameters will not be treated correctly ");
}
}
}
// run first a data fit
const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
RooRealVar *poi = (RooRealVar*)poiSet->first();
std::cout << "StandardHypoTestInvDemo : POI initial value: " << poi->GetName() << " = " << poi->getVal() << std::endl;
// fit the data first (need to use constraint )
TStopwatch tw;
bool doFit = initialFit;
if (testStatType == 0 && initialFit == -1) doFit = false; // case of LEP test statistic
if (type == 3 && initialFit == -1) doFit = false; // case of Asymptoticcalculator with nominal Asimov
double poihat = 0;
if (minimizerType.size()==0) minimizerType = ROOT::Math::MinimizerOptions::DefaultMinimizerType();
else
ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerType.c_str());
Info("StandardHypoTestInvDemo","Using %s as minimizer for computing the test statistic",
示例2: splitws
//.........这里部分代码省略.........
channelNames.insert("OF_CZpeak_1j"+string(!do2011?"_2012":""));
channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
channelNames.insert("ee_signalLike1_2j"+string(!do2011?"_2012":""));
channelNames.insert("SF_topbox_2j"+string(!do2011?"_2012":""));
}
else {
cout << "Channel " << channel << " not defined. Please check!" << endl;
exit(1);
}
// bool fix = 1;
stringstream inFileName;
inFileName << "workspaces/" << inFolderName << "/" << mass << ".root";
TFile f(inFileName.str().c_str());
RooWorkspace* w = (RooWorkspace*)f.Get("combWS");
if (!w) w = (RooWorkspace*)f.Get("combined");
RooDataSet* data = (RooDataSet*)w->data("combData");
if (!data) data = (RooDataSet*)w->data("obsData");
ModelConfig* mc = (ModelConfig*)w->obj("ModelConfig");
RooRealVar* weightVar = w->var("weightVar");
RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();
if (!mu) mu = w->var("SigXsecOverSM");
const RooArgSet* mc_obs = mc->GetObservables();
const RooArgSet* mc_nuis = mc->GetNuisanceParameters();
const RooArgSet* mc_globs = mc->GetGlobalObservables();
const RooArgSet* mc_poi = mc->GetParametersOfInterest();
RooArgSet nuis = *mc_nuis;
RooArgSet antiNuis = *mc_nuis;
RooArgSet globs = *mc_globs;
RooArgSet antiGlobs = *mc_globs;
RooArgSet allParams;
RooSimultaneous* simPdf = (RooSimultaneous*)mc->GetPdf();
RooCategory* cat = (RooCategory*)&simPdf->indexCat();
RooArgSet nuis_tmp = nuis;
RooArgSet fullConstraints = *simPdf->getAllConstraints(*mc_obs,nuis_tmp,false);
vector<string> foundChannels;
vector<string> skippedChannels;
cout << "Getting constraints" << endl;
map<string, RooDataSet*> data_map;
map<string, RooAbsPdf*> pdf_map;
RooCategory* decCat = new RooCategory("dec_channel","dec_channel");
// int i = 0;
TIterator* catItr = cat->typeIterator();
RooCatType* type;
RooArgSet allConstraints;
while ((type = (RooCatType*)catItr->Next())) {
RooAbsPdf* pdf = simPdf->getPdf(type->GetName());
string typeName(type->GetName());
if (channelNames.size() && channelNames.find(typeName) == channelNames.end()) {
示例3: compute_p0
void compute_p0(const char* inFileName,
const char* wsName = "combined",
const char* modelConfigName = "ModelConfig",
const char* dataName = "obsData",
const char* asimov1DataName = "asimovData_1",
const char* conditional1Snapshot = "conditionalGlobs_1",
const char* nominalSnapshot = "nominalGlobs",
string smass = "130",
string folder = "test")
{
double mass;
stringstream massStr;
massStr << smass;
massStr >> mass;
double mu_profile_value = 1; // mu value to profile the obs data at wbefore generating the expected
bool doConditional = 1; // do conditional expected data
bool remakeData = 0; // handle unphysical pdf cases in H->ZZ->4l
bool doUncap = 1; // uncap p0
bool doInj = 0; // setup the poi for injection study (zero is faster if you're not)
bool doObs = 1; // compute median significance
bool doMedian = 1; // compute observed significance
TStopwatch timer;
timer.Start();
TFile f(inFileName);
RooWorkspace* ws = (RooWorkspace*)f.Get(wsName);
if (!ws)
{
cout << "ERROR::Workspace: " << wsName << " doesn't exist!" << endl;
return;
}
ModelConfig* mc = (ModelConfig*)ws->obj(modelConfigName);
if (!mc)
{
cout << "ERROR::ModelConfig: " << modelConfigName << " doesn't exist!" << endl;
return;
}
RooDataSet* data = (RooDataSet*)ws->data(dataName);
if (!data)
{
cout << "ERROR::Dataset: " << dataName << " doesn't exist!" << endl;
return;
}
mc->GetNuisanceParameters()->Print("v");
ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");
ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
ROOT::Math::MinimizerOptions::SetDefaultPrintLevel(1);
cout << "Setting max function calls" << endl;
ws->loadSnapshot("conditionalNuis_0");
RooArgSet nuis(*mc->GetNuisanceParameters());
RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();
RooAbsPdf* pdf = mc->GetPdf();
string condSnapshot(conditional1Snapshot);
RooArgSet nuis_tmp2 = *mc->GetNuisanceParameters();
RooNLLVar* obs_nll = doObs ? (RooNLLVar*)pdf->createNLL(*data, Constrain(nuis_tmp2)) : NULL;
RooDataSet* asimovData1 = (RooDataSet*)ws->data(asimov1DataName);
RooRealVar* emb = (RooRealVar*)mc->GetNuisanceParameters()->find("ATLAS_EMB");
if (!asimovData1 || (string(inFileName).find("ic10") != string::npos && emb))
{
if (emb) emb->setVal(0.7);
cout << "Asimov data doesn't exist! Please, allow me to build one for you..." << endl;
string mu_str, mu_prof_str;
asimovData1 = makeAsimovData(mc, doConditional, ws, obs_nll, 1, &mu_str, &mu_prof_str, mu_profile_value, true);
condSnapshot="conditionalGlobs"+mu_prof_str;
}
if (!doUncap) mu->setRange(0, 40);
else mu->setRange(-40, 40);
RooAbsPdf* pdf = mc->GetPdf();
RooArgSet nuis_tmp1 = *mc->GetNuisanceParameters();
RooNLLVar* asimov_nll = (RooNLLVar*)pdf->createNLL(*asimovData1, Constrain(nuis_tmp1));
//do asimov
mu->setVal(1);
mu->setConstant(0);
if (!doInj) mu->setConstant(1);
int status,sign;
double med_sig=0,obs_sig=0,asimov_q0=0,obs_q0=0;
if (doMedian)
{
ws->loadSnapshot(condSnapshot.c_str());
if (doInj) ws->loadSnapshot("conditionalNuis_inj");
else ws->loadSnapshot("conditionalNuis_1");
mc->GetGlobalObservables()->Print("v");
mu->setVal(0);
mu->setConstant(1);
status = minimize(asimov_nll, ws);
//.........这里部分代码省略.........
示例4: OneSidedFrequentistUpperLimitWithBands
//.........这里部分代码省略.........
// no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
/* ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/
/* fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/
/* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */
ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
testStat->SetOneSided(true);
// Since this tool needs to throw toy MC the PDF needs to be
// extended or the tool needs to know how many entries in a dataset
// per pseudo experiment.
// In the 'number counting form' where the entries in the dataset
// are counts, and not values of discriminating variables, the
// datasets typically only have one entry and the PDF is not
// extended.
if(!mc->GetPdf()->canBeExtended()){
if(data->numEntries()==1)
fc.FluctuateNumDataEntries(false);
else
cout <<"Not sure what to do about this model" <<endl;
}
// We can use PROOF to speed things along in parallel
// However, the test statistic has to be installed on the workers
// so either turn off PROOF or include the modified test statistic
// in your `$ROOTSYS/roofit/roostats/inc` directory,
// add the additional line to the LinkDef.h file,
// and recompile root.
if (useProof) {
ProofConfig pc(*w, nworkers, "", false);
toymcsampler->SetProofConfig(&pc); // enable proof
}
if(mc->GetGlobalObservables()){
cout << "will use global observables for unconditional ensemble"<<endl;
mc->GetGlobalObservables()->Print();
toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
}
// Now get the interval
PointSetInterval* interval = fc.GetInterval();
ConfidenceBelt* belt = fc.GetConfidenceBelt();
// print out the interval on the first Parameter of Interest
cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
interval->LowerLimit(*firstPOI) << ", "<<
interval->UpperLimit(*firstPOI) <<"] "<<endl;
// get observed UL and value of test statistic evaluated there
RooArgSet tmpPOI(*firstPOI);
double observedUL = interval->UpperLimit(*firstPOI);
firstPOI->setVal(observedUL);
double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);
// Ask the calculator which points were scanned
RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
RooArgSet* tmpPoint;
// make a histogram of parameter vs. threshold
TH1F* histOfThresholds = new TH1F("histOfThresholds","",
parameterScan->numEntries(),
firstPOI->getMin(),
firstPOI->getMax());
histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
示例5: OneSidedFrequentistUpperLimitWithBands_intermediate
//.........这里部分代码省略.........
// Feldman-Cousins is a unified limit by definition
// but the tool takes care of a few things for us like which values
// of the nuisance parameters should be used to generate toys.
// so let's just change the test statistic and realize this is
// no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
// ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());
// fc.GetTestStatSampler()->SetTestStatistic(&onesided);
// ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true);
ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
testStat->SetOneSided(true);
// test speedups:
testStat->SetReuseNLL(true);
// toymcsampler->setUseMultiGen(true); // not fully validated
// Since this tool needs to throw toy MC the PDF needs to be
// extended or the tool needs to know how many entries in a dataset
// per pseudo experiment.
// In the 'number counting form' where the entries in the dataset
// are counts, and not values of discriminating variables, the
// datasets typically only have one entry and the PDF is not
// extended.
if(!mc->GetPdf()->canBeExtended()){
if(data->numEntries()==1)
fc.FluctuateNumDataEntries(false);
else
cout <<"Not sure what to do about this model" <<endl;
}
// We can use PROOF to speed things along in parallel
ProofConfig pc(*w, 4, "",false);
if(mc->GetGlobalObservables()){
cout << "will use global observables for unconditional ensemble"<<endl;
mc->GetGlobalObservables()->Print();
toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
}
toymcsampler->SetProofConfig(&pc); // enable proof
// Now get the interval
PointSetInterval* interval = fc.GetInterval();
ConfidenceBelt* belt = fc.GetConfidenceBelt();
// print out the iterval on the first Parameter of Interest
cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
interval->LowerLimit(*firstPOI) << ", "<<
interval->UpperLimit(*firstPOI) <<"] "<<endl;
// get observed UL and value of test statistic evaluated there
RooArgSet tmpPOI(*firstPOI);
double observedUL = interval->UpperLimit(*firstPOI);
firstPOI->setVal(observedUL);
double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);
// Ask the calculator which points were scanned
RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
RooArgSet* tmpPoint;
// make a histogram of parameter vs. threshold
TH1F* histOfThresholds = new TH1F("histOfThresholds","",
parameterScan->numEntries(),
firstPOI->getMin(),
firstPOI->getMax());
开发者ID:gerbaudo,项目名称:hlfv-fitmodel,代码行数:67,代码来源:OneSidedFrequentistUpperLimitWithBands_intermediate.C
示例6: StandardTestStatDistributionDemo
//.........这里部分代码省略.........
// if input file was specified byt not found, quit
if(!file ){
cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
return;
}
/////////////////////////////////////////////////////////////
// Now get the data and workspace
////////////////////////////////////////////////////////////
// get the workspace out of the file
RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
if(!w){
cout <<"workspace not found" << endl;
return;
}
// get the modelConfig out of the file
ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);
// get the modelConfig out of the file
RooAbsData* data = w->data(dataName);
// make sure ingredients are found
if(!data || !mc){
w->Print();
cout << "data or ModelConfig was not found" <<endl;
return;
}
mc->Print();
/////////////////////////////////////////////////////////////
// Now find the upper limit based on the asymptotic results
////////////////////////////////////////////////////////////
RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
ProfileLikelihoodCalculator plc(*data,*mc);
LikelihoodInterval* interval = plc.GetInterval();
double plcUpperLimit = interval->UpperLimit(*firstPOI);
delete interval;
cout << "\n\n--------------------------------------"<<endl;
cout <<"Will generate sampling distribution at " << firstPOI->GetName() << " = " << plcUpperLimit <<endl;
int nPOI = mc->GetParametersOfInterest()->getSize();
if(nPOI>1){
cout <<"not sure what to do with other parameters of interest, but here are their values"<<endl;
mc->GetParametersOfInterest()->Print("v");
}
/////////////////////////////////////////////
// create thte test stat sampler
ProfileLikelihoodTestStat ts(*mc->GetPdf());
// to avoid effects from boundary and simplify asymptotic comparison, set min=-max
if(allowNegativeMu)
firstPOI->setMin(-1*firstPOI->getMax());
// temporary RooArgSet
RooArgSet poi;
poi.add(*mc->GetParametersOfInterest());
// create and configure the ToyMCSampler
ToyMCSampler sampler(ts,nToyMC);
sampler.SetPdf(*mc->GetPdf());
sampler.SetObservables(*mc->GetObservables());
sampler.SetGlobalObservables(*mc->GetGlobalObservables());
if(!mc->GetPdf()->canBeExtended() && (data->numEntries()==1)){
cout << "tell it to use 1 event"<<endl;
sampler.SetNEventsPerToy(1);
}
firstPOI->setVal(plcUpperLimit); // set POI value for generation
sampler.SetParametersForTestStat(*mc->GetParametersOfInterest()); // set POI value for evaluation
if (useProof) {
ProofConfig pc(*w, nworkers, "",false);
sampler.SetProofConfig(&pc); // enable proof
}
firstPOI->setVal(plcUpperLimit);
RooArgSet allParameters;
allParameters.add(*mc->GetParametersOfInterest());
allParameters.add(*mc->GetNuisanceParameters());
allParameters.Print("v");
SamplingDistribution* sampDist = sampler.GetSamplingDistribution(allParameters);
SamplingDistPlot plot;
plot.AddSamplingDistribution(sampDist);
plot.GetTH1F(sampDist)->GetYaxis()->SetTitle(Form("f(-log #lambda(#mu=%.2f) | #mu=%.2f)",plcUpperLimit,plcUpperLimit));
plot.SetAxisTitle(Form("-log #lambda(#mu=%.2f)",plcUpperLimit));
TCanvas* c1 = new TCanvas("c1");
c1->SetLogy();
plot.Draw();
double min = plot.GetTH1F(sampDist)->GetXaxis()->GetXmin();
double max = plot.GetTH1F(sampDist)->GetXaxis()->GetXmax();
TF1* f = new TF1("f",Form("2*ROOT::Math::chisquared_pdf(2*x,%d,0)",nPOI),min,max);
f->Draw("same");
c1->SaveAs("standard_test_stat_distribution.pdf");
}
示例7: runSig
TH1D* runSig(RooWorkspace* ws,
const char* modelConfigName = "ModelConfig",
const char* dataName = "obsData",
const char* asimov1DataName = "asimovData_1",
const char* conditional1Snapshot = "conditionalGlobs_1",
const char* nominalSnapshot = "nominalGlobs")
{
string defaultMinimizer = "Minuit"; // or "Minuit"
int defaultStrategy = 2; // Minimization strategy. 0-2. 0 = fastest, least robust. 2 = slowest, most robust
double mu_profile_value = 1; // mu value to profile the obs data at wbefore generating the expected
bool doUncap = 1; // uncap p0
bool doInj = 0; // setup the poi for injection study (zero is faster if you're not)
bool doMedian = 1; // compute median significance
bool isBlind = 0; // Dont look at observed data
bool doConditional = !isBlind; // do conditional expected data
bool doObs = !isBlind; // compute observed significance
TStopwatch timer;
timer.Start();
if (!ws)
{
cout << "ERROR::Workspace is NULL!" << endl;
return NULL;
}
ModelConfig* mc = (ModelConfig*)ws->obj(modelConfigName);
if (!mc)
{
cout << "ERROR::ModelConfig: " << modelConfigName << " doesn't exist!" << endl;
return NULL;
}
RooDataSet* data = (RooDataSet*)ws->data(dataName);
if (!data)
{
cout << "ERROR::Dataset: " << dataName << " doesn't exist!" << endl;
return NULL;
}
mc->GetNuisanceParameters()->Print("v");
//RooNLLVar::SetIgnoreZeroEntries(1);
ROOT::Math::MinimizerOptions::SetDefaultMinimizer(defaultMinimizer.c_str());
ROOT::Math::MinimizerOptions::SetDefaultStrategy(defaultStrategy);
ROOT::Math::MinimizerOptions::SetDefaultPrintLevel(-1);
// cout << "Setting max function calls" << endl;
//ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls(20000);
//RooMinimizer::SetMaxFunctionCalls(10000);
ws->loadSnapshot("conditionalNuis_0");
RooArgSet nuis(*mc->GetNuisanceParameters());
RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();
RooAbsPdf* pdf_temp = mc->GetPdf();
string condSnapshot(conditional1Snapshot);
RooArgSet nuis_tmp2 = *mc->GetNuisanceParameters();
RooNLLVar* obs_nll = doObs ? (RooNLLVar*)pdf_temp->createNLL(*data, Constrain(nuis_tmp2)) : NULL;
RooDataSet* asimovData1 = (RooDataSet*)ws->data(asimov1DataName);
if (!asimovData1)
{
cout << "Asimov data doesn't exist! Please, allow me to build one for you..." << endl;
string mu_str, mu_prof_str;
asimovData1 = makeAsimovData(mc, doConditional, ws, obs_nll, 1, &mu_str, &mu_prof_str, mu_profile_value, true);
condSnapshot="conditionalGlobs"+mu_prof_str;
//makeAsimovData(mc, true, ws, mc->GetPdf(), data, 0);
//ws->Print();
//asimovData1 = (RooDataSet*)ws->data("asimovData_1");
}
if (!doUncap) mu->setRange(0, 40);
else mu->setRange(-40, 40);
RooAbsPdf* pdf = mc->GetPdf();
RooArgSet nuis_tmp1 = *mc->GetNuisanceParameters();
RooNLLVar* asimov_nll = (RooNLLVar*)pdf->createNLL(*asimovData1, Constrain(nuis_tmp1));
//do asimov
mu->setVal(1);
mu->setConstant(0);
if (!doInj) mu->setConstant(1);
int status,sign;
double med_sig=0,obs_sig=0,asimov_q0=0,obs_q0=0;
if (doMedian)
{
ws->loadSnapshot(condSnapshot.c_str());
if (doInj) ws->loadSnapshot("conditionalNuis_inj");
else ws->loadSnapshot("conditionalNuis_1");
mc->GetGlobalObservables()->Print("v");
mu->setVal(0);
mu->setConstant(1);
status = minimize(asimov_nll, ws);
if (status >= 0) cout << "Success!" << endl;
//.........这里部分代码省略.........