当前位置: 首页>>代码示例>>C++>>正文


C++ ModelConfig::GetPdf方法代码示例

本文整理汇总了C++中ModelConfig::GetPdf方法的典型用法代码示例。如果您正苦于以下问题:C++ ModelConfig::GetPdf方法的具体用法?C++ ModelConfig::GetPdf怎么用?C++ ModelConfig::GetPdf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ModelConfig的用法示例。


在下文中一共展示了ModelConfig::GetPdf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: MCStudy

void MCStudy()
{
    
    string fileName = "h4l_Template_2012_lowmass_unconstrained_new_v00.root";
    
    const char * wsName      = "combined";    //"w";
    const char * modelSBName = "ModelConfig"; //"modelConfig";
    const char * dataName    = dataname.c_str();
    
    TFile* file = TFile::Open(fileName);

    // get the workspace out of file
    RooWorkspace* w = (RooWorkspace*) file->Get(wsName);
    if (!wsName) {
        cout << "workspace not found" << endl;
        return -1.0;
    }
    
    // get the modelConfig out of the file
    ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);
    
    // get the data out of file
    //RooAbsData* data = w->data(dataName);
    
    // get toy MC data
    TFile *fhist = new TFile("../ToyMC/toyMC_ggF125.root");
    TH1F *hsum = (TH1F*) fhist->Get("sumtoy1");
    
    RooRealVar m4l("m4l","m4l",120,130);
    RooDataHist* data = new RooDataHist("data","data",x,hsum);
    
    // get pdf
    RooAbsPdf* model = sbModel->GetPdf();
    
    RooPlot* xframe = m4l.frame();
    data->plotOn(xframe);
    model->fitTo(*data);
    model->plotOn(xframe,LineColor(kRed));
    
    TCanvas *c = new TCanvas("c","c");
    xframe->Draw();
    
}
开发者ID:carlpan,项目名称:HZZResearch,代码行数:43,代码来源:MCStudy.C

示例2: OneSidedFrequentistUpperLimitWithBands_intermediate


//.........这里部分代码省略.........
  // so this is NOT a Feldman-Cousins interval
  FeldmanCousins fc(*data,*mc);
  fc.SetConfidenceLevel(confidenceLevel); 
  fc.AdditionalNToysFactor(additionalToysFac); // improve sampling that defines confidence belt
  //  fc.UseAdaptiveSampling(true); // speed it up a bit, but don't use for expectd limits
  fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
  fc.CreateConfBelt(true); // save the information in the belt for plotting

  /////////////////////////////////////////////
  // Feldman-Cousins is a unified limit by definition
  // but the tool takes care of a few things for us like which values
  // of the nuisance parameters should be used to generate toys.
  // so let's just change the test statistic and realize this is 
  // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
  //  ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());
  //  fc.GetTestStatSampler()->SetTestStatistic(&onesided);
  // ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true);
  ToyMCSampler*  toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); 
  ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
  testStat->SetOneSided(true);


  // test speedups:
  testStat->SetReuseNLL(true);
  //  toymcsampler->setUseMultiGen(true); // not fully validated

  // Since this tool needs to throw toy MC the PDF needs to be
  // extended or the tool needs to know how many entries in a dataset
  // per pseudo experiment.  
  // In the 'number counting form' where the entries in the dataset
  // are counts, and not values of discriminating variables, the
  // datasets typically only have one entry and the PDF is not
  // extended.  
  if(!mc->GetPdf()->canBeExtended()){
    if(data->numEntries()==1)     
      fc.FluctuateNumDataEntries(false);
    else
      cout <<"Not sure what to do about this model" <<endl;
  }

  // We can use PROOF to speed things along in parallel
  ProofConfig pc(*w, 4, "",false); 
  if(mc->GetGlobalObservables()){
    cout << "will use global observables for unconditional ensemble"<<endl;
    mc->GetGlobalObservables()->Print();
    toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
  }
  toymcsampler->SetProofConfig(&pc);	// enable proof


  // Now get the interval
  PointSetInterval* interval = fc.GetInterval();
  ConfidenceBelt* belt = fc.GetConfidenceBelt();
 
  // print out the iterval on the first Parameter of Interest
  cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
    interval->LowerLimit(*firstPOI) << ", "<<
    interval->UpperLimit(*firstPOI) <<"] "<<endl;

  // get observed UL and value of test statistic evaluated there
  RooArgSet tmpPOI(*firstPOI);
  double observedUL = interval->UpperLimit(*firstPOI);
  firstPOI->setVal(observedUL);
  double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);

开发者ID:gerbaudo,项目名称:hlfv-fitmodel,代码行数:65,代码来源:OneSidedFrequentistUpperLimitWithBands_intermediate.C

示例3: ComputeTestStat

float ComputeTestStat(TString wsfile, double mu_susy_sig_val) {

  gROOT->Reset();

  TFile* wstf = new TFile( wsfile ) ;

  RooWorkspace* ws = dynamic_cast<RooWorkspace*>( wstf->Get("ws") );
  ws->Print() ;
  
  ModelConfig* modelConfig = (ModelConfig*) ws->obj( "SbModel" ) ;
  
  modelConfig->Print() ;

  RooDataSet* rds = (RooDataSet*) ws->obj( "ra2b_observed_rds" ) ;
  
  rds->Print() ;
  rds->printMultiline(cout, 1, kTRUE, "") ;
  
  RooAbsPdf* likelihood = modelConfig->GetPdf() ;
  
  RooRealVar* rrv_mu_susy_sig = ws->var("mu_susy_all0lep") ;
  if ( rrv_mu_susy_sig == 0x0 ) {
    printf("\n\n\n *** can't find mu_susy_all0lep in workspace.  Quitting.\n\n\n") ;
    return ;
  } else {
    printf(" current value is : %8.3f\n", rrv_mu_susy_sig->getVal() ) ; cout << flush ;
    rrv_mu_susy_sig->setConstant(kFALSE) ;
  }

  /*
  // check the impact of varying the qcd normalization:

  RooRealVar *rrv_qcd_0lepLDP_ratioH1 = ws->var("qcd_0lepLDP_ratio_H1");
  RooRealVar *rrv_qcd_0lepLDP_ratioH2 = ws->var("qcd_0lepLDP_ratio_H2");
  RooRealVar *rrv_qcd_0lepLDP_ratioH3 = ws->var("qcd_0lepLDP_ratio_H3");
  
  rrv_qcd_0lepLDP_ratioH1->setVal(0.3);
  rrv_qcd_0lepLDP_ratioH2->setVal(0.3);
  rrv_qcd_0lepLDP_ratioH3->setVal(0.3);
  
  rrv_qcd_0lepLDP_ratioH1->setConstant(kTRUE);
  rrv_qcd_0lepLDP_ratioH2->setConstant(kTRUE);
  rrv_qcd_0lepLDP_ratioH3->setConstant(kTRUE);
  */
  
  printf("\n\n\n  ===== Doing a fit with SUSY component floating ====================\n\n") ;

  RooFitResult* fitResult = likelihood->fitTo( *rds, Save(true), PrintLevel(0) ) ;
  double logLikelihoodSusyFloat = fitResult->minNll() ;
  
  double logLikelihoodSusyFixed(0.) ;
  double testStatVal(-1.) ;
  if ( mu_susy_sig_val >= 0. ) {
    printf("\n\n\n  ===== Doing a fit with SUSY fixed ====================\n\n") ;
    printf(" fixing mu_susy_sig to %8.2f.\n", mu_susy_sig_val ) ;
    rrv_mu_susy_sig->setVal( mu_susy_sig_val ) ;
    rrv_mu_susy_sig->setConstant(kTRUE) ;
    
    fitResult = likelihood->fitTo( *rds, Save(true), PrintLevel(0) ) ;
    logLikelihoodSusyFixed = fitResult->minNll() ;
    testStatVal = 2.*(logLikelihoodSusyFixed - logLikelihoodSusyFloat) ;
    printf("\n\n\n ======= test statistic : -2 * ln (L_fixed / ln L_max) = %8.3f\n\n\n", testStatVal ) ;
  }


  return testStatVal ;

}
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:68,代码来源:ComputeTestStat.C

示例4: splitws


//.........这里部分代码省略.........

  // bool fix = 1;
  stringstream inFileName;

  inFileName << "workspaces/" << inFolderName << "/" << mass << ".root";
  TFile f(inFileName.str().c_str());
  
  RooWorkspace* w = (RooWorkspace*)f.Get("combWS");
  if (!w) w = (RooWorkspace*)f.Get("combined");
  
  RooDataSet* data = (RooDataSet*)w->data("combData");
  if (!data) data = (RooDataSet*)w->data("obsData");
  
  ModelConfig* mc = (ModelConfig*)w->obj("ModelConfig");
  
  RooRealVar* weightVar = w->var("weightVar");
  
  RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();
  if (!mu) mu = w->var("SigXsecOverSM");

  const RooArgSet* mc_obs = mc->GetObservables();
  const RooArgSet* mc_nuis = mc->GetNuisanceParameters();
  const RooArgSet* mc_globs = mc->GetGlobalObservables();
  const RooArgSet* mc_poi = mc->GetParametersOfInterest();

  RooArgSet nuis = *mc_nuis;
  RooArgSet antiNuis = *mc_nuis;

  RooArgSet globs = *mc_globs;
  RooArgSet antiGlobs = *mc_globs;

  RooArgSet allParams;

  RooSimultaneous* simPdf = (RooSimultaneous*)mc->GetPdf();
  RooCategory* cat = (RooCategory*)&simPdf->indexCat();

  RooArgSet nuis_tmp = nuis;
  RooArgSet fullConstraints = *simPdf->getAllConstraints(*mc_obs,nuis_tmp,false);

  vector<string> foundChannels;
  vector<string> skippedChannels;  

  cout << "Getting constraints" << endl;
  map<string, RooDataSet*> data_map;
  map<string, RooAbsPdf*> pdf_map;
  RooCategory* decCat = new RooCategory("dec_channel","dec_channel");
  // int i = 0;
  TIterator* catItr = cat->typeIterator();
  RooCatType* type;
  RooArgSet allConstraints;
  while ((type = (RooCatType*)catItr->Next())) {
    RooAbsPdf* pdf =  simPdf->getPdf(type->GetName());

    string typeName(type->GetName());
    if (channelNames.size() && channelNames.find(typeName) == channelNames.end())  {
      skippedChannels.push_back(typeName);
      continue;
    }
    cout << "On channel " << type->GetName() << endl;
    foundChannels.push_back(typeName);

    decCat->defineType(type->GetName());
    // pdf->getParameters(*data)->Print("v");

    RooArgSet nuis_tmp1 = nuis;
    RooArgSet nuis_tmp2 = nuis;
开发者ID:lspiller,项目名称:limitcode,代码行数:67,代码来源:splitws.C

示例5: slrts

// internal routine to run the inverter
HypoTestInverterResult *
RooStats::HypoTestInvTool::RunInverter(RooWorkspace * w,
                                       const char * modelSBName, const char * modelBName, 
                                       const char * dataName, int type,  int testStatType, 
                                       bool useCLs, int npoints, double poimin, double poimax, 
                                       int ntoys,
                                       bool useNumberCounting,
                                       const char * nuisPriorName ){

   std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl;
  
   w->Print();
  
  
   RooAbsData * data = w->data(dataName); 
   if (!data) { 
      Error("StandardHypoTestDemo","Not existing data %s",dataName);
      return 0;
   }
   else 
      std::cout << "Using data set " << dataName << std::endl;
  
   if (mUseVectorStore) { 
      RooAbsData::setDefaultStorageType(RooAbsData::Vector);
      data->convertToVectorStore() ;
   }
  
  
   // get models from WS
   // get the modelConfig out of the file
   ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
   ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);
  
   if (!sbModel) {
      Error("StandardHypoTestDemo","Not existing ModelConfig %s",modelSBName);
      return 0;
   }
   // check the model 
   if (!sbModel->GetPdf()) { 
      Error("StandardHypoTestDemo","Model %s has no pdf ",modelSBName);
      return 0;
   }
   if (!sbModel->GetParametersOfInterest()) {
      Error("StandardHypoTestDemo","Model %s has no poi ",modelSBName);
      return 0;
   }
   if (!sbModel->GetObservables()) {
      Error("StandardHypoTestInvDemo","Model %s has no observables ",modelSBName);
      return 0;
   }
   if (!sbModel->GetSnapshot() ) { 
      Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }
  
   // case of no systematics
   // remove nuisance parameters from model
   if (noSystematics) { 
      const RooArgSet * nuisPar = sbModel->GetNuisanceParameters();
      if (nuisPar && nuisPar->getSize() > 0) { 
         std::cout << "StandardHypoTestInvDemo" << "  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
         RooStats::SetAllConstant(*nuisPar);
      }
      if (bModel) { 
         const RooArgSet * bnuisPar = bModel->GetNuisanceParameters();
         if (bnuisPar) 
            RooStats::SetAllConstant(*bnuisPar);
      }
   }
  
   if (!bModel || bModel == sbModel) {
      Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("_with_poi_0"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return 0;
      double oldval = var->getVal();
      var->setVal(0);
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
   }
   else { 
      if (!bModel->GetSnapshot() ) { 
         Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi and 0 values ",modelBName);
         RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
         if (var) { 
            double oldval = var->getVal();
            var->setVal(0);
            bModel->SetSnapshot( RooArgSet(*var)  );
            var->setVal(oldval);
         }
         else { 
            Error("StandardHypoTestInvDemo","Model %s has no valid poi",modelBName);
            return 0;
         }         
      }
   }

//.........这里部分代码省略.........
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:StandardHypoTestInvDemo.C

示例6: compute_p0

void compute_p0(const char* inFileName,
	    const char* wsName = "combined",
	    const char* modelConfigName = "ModelConfig",
	    const char* dataName = "obsData",
	    const char* asimov1DataName = "asimovData_1",
	    const char* conditional1Snapshot = "conditionalGlobs_1",
	    const char* nominalSnapshot = "nominalGlobs",
	    string smass = "130",
	    string folder = "test")
{
  double mass;
  stringstream massStr;
  massStr << smass;
  massStr >> mass;

  double mu_profile_value = 1; // mu value to profile the obs data at wbefore generating the expected
  bool doConditional      = 1; // do conditional expected data
  bool remakeData         = 0; // handle unphysical pdf cases in H->ZZ->4l
  bool doUncap            = 1; // uncap p0
  bool doInj              = 0; // setup the poi for injection study (zero is faster if you're not)
  bool doObs              = 1; // compute median significance
  bool doMedian           = 1; // compute observed significance

  TStopwatch timer;
  timer.Start();

  TFile f(inFileName);
  RooWorkspace* ws = (RooWorkspace*)f.Get(wsName);
  if (!ws)
  {
    cout << "ERROR::Workspace: " << wsName << " doesn't exist!" << endl;
    return;
  }
  ModelConfig* mc = (ModelConfig*)ws->obj(modelConfigName);
  if (!mc)
  {
    cout << "ERROR::ModelConfig: " << modelConfigName << " doesn't exist!" << endl;
    return;
  }
  RooDataSet* data = (RooDataSet*)ws->data(dataName);
  if (!data)
  {
    cout << "ERROR::Dataset: " << dataName << " doesn't exist!" << endl;
    return;
  }

  mc->GetNuisanceParameters()->Print("v");

  ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");
  ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
  ROOT::Math::MinimizerOptions::SetDefaultPrintLevel(1);
  cout << "Setting max function calls" << endl;

  ws->loadSnapshot("conditionalNuis_0");
  RooArgSet nuis(*mc->GetNuisanceParameters());

  RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();

  RooAbsPdf* pdf = mc->GetPdf();

  string condSnapshot(conditional1Snapshot);
  RooArgSet nuis_tmp2 = *mc->GetNuisanceParameters();
  RooNLLVar* obs_nll = doObs ? (RooNLLVar*)pdf->createNLL(*data, Constrain(nuis_tmp2)) : NULL;

  RooDataSet* asimovData1 = (RooDataSet*)ws->data(asimov1DataName);
  RooRealVar* emb = (RooRealVar*)mc->GetNuisanceParameters()->find("ATLAS_EMB");
  if (!asimovData1 || (string(inFileName).find("ic10") != string::npos && emb))
  {
    if (emb) emb->setVal(0.7);
    cout << "Asimov data doesn't exist! Please, allow me to build one for you..." << endl;
    string mu_str, mu_prof_str;
    asimovData1 = makeAsimovData(mc, doConditional, ws, obs_nll, 1, &mu_str, &mu_prof_str, mu_profile_value, true);
    condSnapshot="conditionalGlobs"+mu_prof_str;
  }
  
  if (!doUncap) mu->setRange(0, 40);
  else mu->setRange(-40, 40);

  RooAbsPdf* pdf = mc->GetPdf();

  RooArgSet nuis_tmp1 = *mc->GetNuisanceParameters();
  RooNLLVar* asimov_nll = (RooNLLVar*)pdf->createNLL(*asimovData1, Constrain(nuis_tmp1));

  //do asimov
  mu->setVal(1);
  mu->setConstant(0);
  if (!doInj) mu->setConstant(1);

  int status,sign;
  double med_sig=0,obs_sig=0,asimov_q0=0,obs_q0=0;

  if (doMedian)
  {
    ws->loadSnapshot(condSnapshot.c_str());
    if (doInj) ws->loadSnapshot("conditionalNuis_inj");
    else ws->loadSnapshot("conditionalNuis_1");
    mc->GetGlobalObservables()->Print("v");
    mu->setVal(0);
    mu->setConstant(1);
    status = minimize(asimov_nll, ws);
//.........这里部分代码省略.........
开发者ID:dguest,项目名称:HistFitter,代码行数:101,代码来源:compute_p0.C

示例7: StandardFeldmanCousinsDemo

void StandardFeldmanCousinsDemo(const char* infile = "",
                                const char* workspaceName = "combined",
                                const char* modelConfigName = "ModelConfig",
                                const char* dataName = "obsData"){

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


   // -------------------------------------------------------
   // Tutorial starts here
   // -------------------------------------------------------

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // create and use the FeldmanCousins tool
   // to find and plot the 95% confidence interval
   // on the parameter of interest as specified
   // in the model config
   FeldmanCousins fc(*data,*mc);
   fc.SetConfidenceLevel(0.95); // 95% interval
   //fc.AdditionalNToysFactor(0.1); // to speed up the result
   fc.UseAdaptiveSampling(true); // speed it up a bit
   fc.SetNBins(10); // set how many points per parameter of interest to scan
   fc.CreateConfBelt(true); // save the information in the belt for plotting

   // Since this tool needs to throw toy MC the PDF needs to be
   // extended or the tool needs to know how many entries in a dataset
   // per pseudo experiment.
   // In the 'number counting form' where the entries in the dataset
   // are counts, and not values of discriminating variables, the
   // datasets typically only have one entry and the PDF is not
   // extended.
   if(!mc->GetPdf()->canBeExtended()){
      if(data->numEntries()==1)
         fc.FluctuateNumDataEntries(false);
      else
         cout <<"Not sure what to do about this model" <<endl;
   }

   // We can use PROOF to speed things along in parallel
   //  ProofConfig pc(*w, 1, "workers=4", kFALSE);
   //  ToyMCSampler*  toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
   //  toymcsampler->SetProofConfig(&pc); // enable proof


   // Now get the interval
   PointSetInterval* interval = fc.GetInterval();
   ConfidenceBelt* belt = fc.GetConfidenceBelt();
//.........这里部分代码省略.........
开发者ID:pmiquelm,项目名称:root,代码行数:101,代码来源:StandardFeldmanCousinsDemo.C

示例8: slrts

// internal routine to run the inverter
HypoTestInverterResult *  RunInverter(RooWorkspace * w, const char * modelSBName, const char * modelBName, 
                                      const char * dataName, int type,  int testStatType, 
                                      int npoints, double poimin, double poimax, 
                                      int ntoys, bool useCls ) 
{

   std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl;

   w->Print();


   RooAbsData * data = w->data(dataName); 
   if (!data) { 
      Error("RA2bHypoTestDemo","Not existing data %s",dataName);
      return 0;
   }
   else 
      std::cout << "Using data set " << dataName << std::endl;

   
   // get models from WS
   // get the modelConfig out of the file
   ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
   ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);

   if (!sbModel) {
      Error("RA2bHypoTestDemo","Not existing ModelConfig %s",modelSBName);
      return 0;
   }
   // check the model 
   if (!sbModel->GetPdf()) { 
      Error("RA2bHypoTestDemo","Model %s has no pdf ",modelSBName);
      return 0;
   }
   if (!sbModel->GetParametersOfInterest()) {
      Error("RA2bHypoTestDemo","Model %s has no poi ",modelSBName);
      return 0;
   }
   if (!sbModel->GetParametersOfInterest()) {
      Error("RA2bHypoTestInvDemo","Model %s has no poi ",modelSBName);
      return 0;
   }
   if (!sbModel->GetSnapshot() ) { 
      Info("RA2bHypoTestInvDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }


   if (!bModel || bModel == sbModel) {
      Info("RA2bHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("RA2bHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("_with_poi_0"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return 0;
      double oldval = var->getVal();
      var->setVal(0);
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
   }
   else { 
      if (!bModel->GetSnapshot() ) { 
         Info("RA2bHypoTestInvDemo","Model %s has no snapshot  - make one using model poi and 0 values ",modelBName);
         RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
         if (var) { 
            double oldval = var->getVal();
            var->setVal(0);
            bModel->SetSnapshot( RooArgSet(*var)  );
            var->setVal(oldval);
         }
         else { 
            Error("RA2bHypoTestInvDemo","Model %s has no valid poi",modelBName);
            return 0;
         }         
      }
   }


   SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(),*bModel->GetPdf());
   if (sbModel->GetSnapshot()) slrts.SetNullParameters(*sbModel->GetSnapshot());
   if (bModel->GetSnapshot()) slrts.SetAltParameters(*bModel->GetSnapshot());

   // ratio of profile likelihood - need to pass snapshot for the alt
   RatioOfProfiledLikelihoodsTestStat 
      ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
   ropl.SetSubtractMLE(false);
   
   //MyProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   if (testStatType == 3) profll.SetOneSided(1);
   if (optimize) profll.SetReuseNLL(true);

   TestStatistic * testStat = &slrts;
   if (testStatType == 1) testStat = &ropl;
   if (testStatType == 2 || testStatType == 3) testStat = &profll;
  
   
   HypoTestCalculatorGeneric *  hc = 0;
   if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
//.........这里部分代码省略.........
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:RA2bHypoTestInvDemo.c

示例9: StandardHistFactoryPlotsWithCategories

void StandardHistFactoryPlotsWithCategories(const char* infile = "",
                                            const char* workspaceName = "combined",
                                            const char* modelConfigName = "ModelConfig",
                                            const char* dataName = "obsData"){


   double nSigmaToVary=5.;
   double muVal=0;
   bool doFit=false;

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
                                                           // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }

   // -------------------------------------------------------
   // Tutorial starts here
   // -------------------------------------------------------

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // now use the profile inspector

   RooRealVar* obs = (RooRealVar*)mc->GetObservables()->first();
   TList* list = new TList();


   RooRealVar * firstPOI = dynamic_cast<RooRealVar*>(mc->GetParametersOfInterest()->first());

   firstPOI->setVal(muVal);
   //  firstPOI->setConstant();
   if(doFit){
      mc->GetPdf()->fitTo(*data);
   }

   // -------------------------------------------------------


   mc->GetNuisanceParameters()->Print("v");
   int  nPlotsMax = 1000;
   cout <<" check expectedData by category"<<endl;
   RooDataSet* simData=NULL;
   RooSimultaneous* simPdf = NULL;
   if(strcmp(mc->GetPdf()->ClassName(),"RooSimultaneous")==0){
      cout <<"Is a simultaneous PDF"<<endl;
      simPdf = (RooSimultaneous *)(mc->GetPdf());
   } else {
      cout <<"Is not a simultaneous PDF"<<endl;
   }


//.........这里部分代码省略.........
开发者ID:Y--,项目名称:root,代码行数:101,代码来源:StandardHistFactoryPlotsWithCategories.C

示例10: outputdir

   void ws_constrained_profile3D( const char* wsfile = "rootfiles/ws-data-unblind.root",
                                   const char* new_poi_name = "n_M234_H4_3b",
                                   int npoiPoints = 20,
                                   double poiMinVal = 0.,
                                   double poiMaxVal = 20.,
                                   double constraintWidth = 1.5,
                                   double ymax = 10.,
                                   int verbLevel=0 ) {


     gStyle->SetOptStat(0) ;

     //--- make output directory.

     char command[10000] ;
     sprintf( command, "basename %s", wsfile ) ;
     TString wsfilenopath = gSystem->GetFromPipe( command ) ;
     wsfilenopath.ReplaceAll(".root","") ;
     char outputdirstr[1000] ;
     sprintf( outputdirstr, "outputfiles/scans-%s", wsfilenopath.Data() ) ;
     TString outputdir( outputdirstr ) ;


     printf("\n\n Creating output directory: %s\n\n", outputdir.Data() ) ;
     sprintf(command, "mkdir -p %s", outputdir.Data() ) ;
     gSystem->Exec( command ) ;


     //--- Tell RooFit to shut up about anything less important than an ERROR.
      RooMsgService::instance().setGlobalKillBelow(RooFit::ERROR) ;



       if ( verbLevel > 0 ) { printf("\n\n Verbose level : %d\n\n", verbLevel) ; }


       TFile* wstf = new TFile( wsfile ) ;

       RooWorkspace* ws = dynamic_cast<RooWorkspace*>( wstf->Get("ws") );

       if ( verbLevel > 0 ) { ws->Print() ; }






       RooDataSet* rds = (RooDataSet*) ws->obj( "ra2b_observed_rds" ) ;

       if ( verbLevel > 0 ) {
          printf("\n\n\n  ===== RooDataSet ====================\n\n") ;
          rds->Print() ;
          rds->printMultiline(cout, 1, kTRUE, "") ;
       }





       ModelConfig* modelConfig = (ModelConfig*) ws->obj( "SbModel" ) ;
       RooAbsPdf* likelihood = modelConfig->GetPdf() ;

       RooRealVar* rrv_mu_susy_all0lep = ws->var("mu_susy_all0lep") ;
       if ( rrv_mu_susy_all0lep == 0x0 ) {
          printf("\n\n\n *** can't find mu_susy_all0lep in workspace.  Quitting.\n\n\n") ;
          return ;
       }





       //-- do BG only.
       rrv_mu_susy_all0lep->setVal(0.) ;
       rrv_mu_susy_all0lep->setConstant( kTRUE ) ;










       //-- do a prefit.

       printf("\n\n\n ====== Pre fit with unmodified nll var.\n\n") ;

       RooFitResult* dataFitResultSusyFixed = likelihood->fitTo(*rds, Save(true),Hesse(false),Minos(false),Strategy(1),PrintLevel(verbLevel));
       int dataSusyFixedFitCovQual = dataFitResultSusyFixed->covQual() ;
       if ( dataSusyFixedFitCovQual < 2 ) { printf("\n\n\n *** Failed fit!  Cov qual %d.  Quitting.\n\n", dataSusyFixedFitCovQual ) ; return ; }
       double dataFitSusyFixedNll = dataFitResultSusyFixed->minNll() ;

       if ( verbLevel > 0 ) {
          dataFitResultSusyFixed->Print("v") ;
       }

       printf("\n\n Nll value, from fit result : %.3f\n\n", dataFitSusyFixedNll ) ;

//.........这里部分代码省略.........
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:ws_constrained_profile3D.c

示例11: HypoTestInvDemo

void HypoTestInvDemo(const char * fileName ="GausModel_b.root",
                     const char * wsName = "w",
                     const char * modelSBName = "model_sb",
                     const char * modelBName = "model_b",
                     const char * dataName = "data_obs",                  
                     int type = 0,  // calculator type 
                     int testStatType = 0, // test stat type
                     int npoints = 10,   
                     int ntoys=1000,
                     bool useCls = true )
{ 
   /*
    type = 0 Freq calculator 
    type = 1 Hybrid 

    testStatType = 0 LEP
                 = 1 Tevatron 
                 = 2 PL


   */

   if (fileName==0) { 
      std::cout << "give input filename " << std::endl;
      return; 
   }
   TFile * file = new TFile(fileName); 

   RooWorkspace * w = dynamic_cast<RooWorkspace*>( file->Get(wsName) );
   if (!w) {      
      return; 
   }
   w->Print();


   RooAbsData * data = w->data(dataName); 
   if (!data) { 
      Error("HypoTestDemo","Not existing data %s",dataName);
   }

   
   // get models from WS
  // get the modelConfig out of the file
  ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
  ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);


   SimpleLikelihoodRatioTestStat slrts(*bModel->GetPdf(),*sbModel->GetPdf());
   slrts.SetNullParameters(*bModel->GetSnapshot());
   slrts.SetAltParameters(*sbModel->GetSnapshot());

   RatioOfProfiledLikelihoodsTestStat 
   ropl(*bModel->GetPdf(), *sbModel->GetPdf(), sbModel->GetSnapshot());
   ropl.SetSubtractMLE(false);
   
   ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   profll.SetOneSided(0);

   TestStatistic * testStat = &slrts;
   if (testStatType == 1) testStat = &ropl;
   if (testStatType == 2) testStat = &profll;
  
   
   HypoTestCalculatorGeneric *  hc = 0;
   if (type == 0) hc = new FrequentistCalculator(*data, *sbModel, *bModel);
   else new HybridCalculator(*data, *sbModel, *bModel);

   ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
   //toymcs->SetNEventsPerToy(1);
   toymcs->SetTestStatistic(testStat);


    if (type == 1) { 
      HybridCalculator *hhc = (HybridCalculator*) hc;
      hhc->SetToys(ntoys,ntoys); 
      // hhc->ForcePriorNuisanceAlt(*pdfNuis);
      // hhc->ForcePriorNuisanceNull(*pdfNuis);
   } 
   else 
      ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys); 

  // Get the result
   RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);


   TStopwatch tw; tw.Start(); 
   const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
   RooRealVar *poi = (RooRealVar*)poiSet->first();

   // fit the data first
   sbModel->GetPdf()->fitTo(*data);
   double poihat  = poi->getVal();
   //poi->setVal(30);
   //poi->setError(10);


   HypoTestInverter calc(*hc);
   // GENA: for two-sided interval
   //calc.SetConfidenceLevel(0.95);
   // GENA: for 95% upper limit
//.........这里部分代码省略.........
开发者ID:TENorbert,项目名称:SUSY-TOOLS,代码行数:101,代码来源:lorenzo_moneta_HypoTestInvDemo_16jun2011.C

示例12: StandardTestStatDistributionDemo

void StandardTestStatDistributionDemo(const char* infile = "",
                                      const char* workspaceName = "combined",
                                      const char* modelConfigName = "ModelConfig",
                                      const char* dataName = "obsData"){


  // the number of toy MC used to generate the distribution
  int nToyMC = 1000;
  // The parameter below is needed for asymptotic distribution to be chi-square,
  // but set to false if your model is not numerically stable if mu<0
  bool allowNegativeMu=true;


  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


  /////////////////////////////////////////////////////////////
  // Now get the data and workspace
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }

  // get the modelConfig out of the file
  ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !mc){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }

  mc->Print();
  /////////////////////////////////////////////////////////////
  // Now find the upper limit based on the asymptotic results
  ////////////////////////////////////////////////////////////
  RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
  ProfileLikelihoodCalculator plc(*data,*mc);
  LikelihoodInterval* interval = plc.GetInterval();
  double plcUpperLimit = interval->UpperLimit(*firstPOI);
  delete interval;
  cout << "\n\n--------------------------------------"<<endl;
  cout <<"Will generate sampling distribution at " << firstPOI->GetName() << " = " << plcUpperLimit <<endl;
  int nPOI = mc->GetParametersOfInterest()->getSize();
  if(nPOI>1){
    cout <<"not sure what to do with other parameters of interest, but here are their values"<<endl;
    mc->GetParametersOfInterest()->Print("v");
  }

  /////////////////////////////////////////////
  // create thte test stat sampler
  ProfileLikelihoodTestStat ts(*mc->GetPdf());

  // to avoid effects from boundary and simplify asymptotic comparison, set min=-max
  if(allowNegativeMu)
    firstPOI->setMin(-1*firstPOI->getMax());

  // temporary RooArgSet
//.........这里部分代码省略.........
开发者ID:MycrofD,项目名称:root,代码行数:101,代码来源:StandardTestStatDistributionDemo.C

示例13: fitqual_plots

   void fitqual_plots( const char* wsfile = "outputfiles/ws.root", const char* plottitle="" ) {

      TText* tt_title = new TText() ;
      tt_title -> SetTextAlign(33) ;

      gStyle -> SetOptStat(0) ;
      gStyle -> SetLabelSize( 0.06, "y" ) ;
      gStyle -> SetLabelSize( 0.08, "x" ) ;
      gStyle -> SetLabelOffset( 0.010, "y" ) ;
      gStyle -> SetLabelOffset( 0.010, "x" ) ;
      gStyle -> SetTitleSize( 0.07, "y" ) ;
      gStyle -> SetTitleSize( 0.05, "x" ) ;
      gStyle -> SetTitleOffset( 1.50, "x" ) ;
      gStyle -> SetTitleH( 0.07 ) ;
      gStyle -> SetPadLeftMargin( 0.15 ) ;
      gStyle -> SetPadBottomMargin( 0.15 ) ;
      gStyle -> SetTitleX( 0.10 ) ;

      gDirectory->Delete("h*") ;

      TFile* wstf = new TFile( wsfile ) ;

      RooWorkspace* ws = dynamic_cast<RooWorkspace*>( wstf->Get("ws") );
      ws->Print() ;

      int bins_of_met = TMath::Nint( ws->var("bins_of_met")->getVal()  ) ;
      printf("\n\n Bins of MET : %d\n\n", bins_of_met ) ;

      int bins_of_nb = TMath::Nint( ws->var("bins_of_nb")->getVal()  ) ;
      printf("\n\n Bins of nb : %d\n\n", bins_of_nb ) ;

      int nb_lookup[10] ;
      if ( bins_of_nb == 2 ) {
         nb_lookup[0] = 2 ;
         nb_lookup[1] = 4 ;
      } else if ( bins_of_nb == 3 ) {
         nb_lookup[0] = 2 ;
         nb_lookup[1] = 3 ;
         nb_lookup[2] = 4 ;
      }

      TCanvas* cfq1 = (TCanvas*) gDirectory->FindObject("cfq1") ;
      if ( cfq1 == 0x0 ) {
         if ( bins_of_nb == 3 ) {
            cfq1 = new TCanvas("cfq1","hbb fit", 700, 1000 ) ;
         } else if ( bins_of_nb == 2 ) {
            cfq1 = new TCanvas("cfq1","hbb fit", 700, 750 ) ;
         } else {
            return ;
         }
      }

      RooRealVar* rv_sig_strength = ws->var("sig_strength") ;
      if ( rv_sig_strength == 0x0 ) { printf("\n\n *** can't find sig_strength in workspace.\n\n" ) ; return ; }

      ModelConfig* modelConfig = (ModelConfig*) ws->obj( "SbModel" ) ;

      RooDataSet* rds = (RooDataSet*) ws->obj( "hbb_observed_rds" ) ;

      rds->Print() ;
      rds->printMultiline(cout, 1, kTRUE, "") ;

      RooAbsPdf* likelihood = modelConfig->GetPdf() ;

      ///RooFitResult* fitResult = likelihood->fitTo( *rds, Save(true), PrintLevel(0) ) ;
      RooFitResult* fitResult = likelihood->fitTo( *rds, Save(true), PrintLevel(3) ) ;
      fitResult->Print() ;


      char hname[1000] ;
      char htitle[1000] ;
      char pname[1000] ;




     //-- unpack observables.

      int obs_N_msig[10][50] ; // first index is n btags, second is met bin.
      int obs_N_msb[10][50]  ; // first index is n btags, second is met bin.

      const RooArgSet* dsras = rds->get() ;
      TIterator* obsIter = dsras->createIterator() ;
      while ( RooRealVar* obs = (RooRealVar*) obsIter->Next() ) {
         for ( int nbi=0; nbi<bins_of_nb; nbi++ ) {
            for ( int mbi=0; mbi<bins_of_met; mbi++ ) {
               sprintf( pname, "N_%db_msig_met%d", nb_lookup[nbi], mbi+1 ) ;
               if ( strcmp( obs->GetName(), pname ) == 0 ) { obs_N_msig[nbi][mbi] = TMath::Nint( obs -> getVal() ) ; }
               sprintf( pname, "N_%db_msb_met%d", nb_lookup[nbi], mbi+1 ) ;
               if ( strcmp( obs->GetName(), pname ) == 0 ) { obs_N_msb[nbi][mbi] = TMath::Nint( obs -> getVal() ) ; }
            } // mbi.
         } // nbi.
      } // obs iterator.


      printf("\n\n") ;
      for ( int nbi=0; nbi<bins_of_nb; nbi++ ) {
         printf(" nb=%d :  ", nb_lookup[nbi] ) ;
         for ( int mbi=0; mbi<bins_of_met; mbi++ ) {
            printf("  sig=%3d, sb=%3d  |", obs_N_msig[nbi][mbi], obs_N_msb[nbi][mbi] ) ;
//.........这里部分代码省略.........
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:fitqual_plots.c

示例14: runSig

TH1D* runSig(RooWorkspace* ws,
             const char* modelConfigName = "ModelConfig",
             const char* dataName = "obsData",
             const char* asimov1DataName = "asimovData_1",
             const char* conditional1Snapshot = "conditionalGlobs_1",
             const char* nominalSnapshot = "nominalGlobs")
{
    string defaultMinimizer    = "Minuit";     // or "Minuit"
    int defaultStrategy        = 2;             // Minimization strategy. 0-2. 0 = fastest, least robust. 2 = slowest, most robust

    double mu_profile_value = 1; // mu value to profile the obs data at wbefore generating the expected
    bool doUncap            = 1; // uncap p0
    bool doInj              = 0; // setup the poi for injection study (zero is faster if you're not)
    bool doMedian           = 1; // compute median significance
    bool isBlind            = 0; // Dont look at observed data
    bool doConditional      = !isBlind; // do conditional expected data
    bool doObs              = !isBlind; // compute observed significance

    TStopwatch timer;
    timer.Start();

    if (!ws)
    {
        cout << "ERROR::Workspace is NULL!" << endl;
        return NULL;
    }
    ModelConfig* mc = (ModelConfig*)ws->obj(modelConfigName);
    if (!mc)
    {
        cout << "ERROR::ModelConfig: " << modelConfigName << " doesn't exist!" << endl;
        return NULL;
    }
    RooDataSet* data = (RooDataSet*)ws->data(dataName);
    if (!data)
    {
        cout << "ERROR::Dataset: " << dataName << " doesn't exist!" << endl;
        return NULL;
    }

    mc->GetNuisanceParameters()->Print("v");

    //RooNLLVar::SetIgnoreZeroEntries(1);
    ROOT::Math::MinimizerOptions::SetDefaultMinimizer(defaultMinimizer.c_str());
    ROOT::Math::MinimizerOptions::SetDefaultStrategy(defaultStrategy);
    ROOT::Math::MinimizerOptions::SetDefaultPrintLevel(-1);
    //  cout << "Setting max function calls" << endl;
    //ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls(20000);
    //RooMinimizer::SetMaxFunctionCalls(10000);

    ws->loadSnapshot("conditionalNuis_0");
    RooArgSet nuis(*mc->GetNuisanceParameters());

    RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();

    RooAbsPdf* pdf_temp = mc->GetPdf();

    string condSnapshot(conditional1Snapshot);
    RooArgSet nuis_tmp2 = *mc->GetNuisanceParameters();
    RooNLLVar* obs_nll = doObs ? (RooNLLVar*)pdf_temp->createNLL(*data, Constrain(nuis_tmp2)) : NULL;

    RooDataSet* asimovData1 = (RooDataSet*)ws->data(asimov1DataName);
    if (!asimovData1)
    {
        cout << "Asimov data doesn't exist! Please, allow me to build one for you..." << endl;
        string mu_str, mu_prof_str;

        asimovData1 = makeAsimovData(mc, doConditional, ws, obs_nll, 1, &mu_str, &mu_prof_str, mu_profile_value, true);
        condSnapshot="conditionalGlobs"+mu_prof_str;

        //makeAsimovData(mc, true, ws, mc->GetPdf(), data, 0);
        //ws->Print();
        //asimovData1 = (RooDataSet*)ws->data("asimovData_1");
    }

    if (!doUncap) mu->setRange(0, 40);
    else mu->setRange(-40, 40);

    RooAbsPdf* pdf = mc->GetPdf();
    RooArgSet nuis_tmp1 = *mc->GetNuisanceParameters();
    RooNLLVar* asimov_nll = (RooNLLVar*)pdf->createNLL(*asimovData1, Constrain(nuis_tmp1));

    //do asimov
    mu->setVal(1);
    mu->setConstant(0);
    if (!doInj) mu->setConstant(1);

    int status,sign;
    double med_sig=0,obs_sig=0,asimov_q0=0,obs_q0=0;

    if (doMedian)
    {
        ws->loadSnapshot(condSnapshot.c_str());
        if (doInj) ws->loadSnapshot("conditionalNuis_inj");
        else ws->loadSnapshot("conditionalNuis_1");
        mc->GetGlobalObservables()->Print("v");
        mu->setVal(0);
        mu->setConstant(1);
        status = minimize(asimov_nll, ws);
        if (status >= 0) cout << "Success!" << endl;

//.........这里部分代码省略.........
开发者ID:sagittaeri,项目名称:htt,代码行数:101,代码来源:runSig.C

示例15: new_RA4

void new_RA4(){
  
  // let's time this challenging example
  TStopwatch t;
  t.Start();

  // set RooFit random seed for reproducible results
  RooRandom::randomGenerator()->SetSeed(4357);

  // make model
  RooWorkspace* wspace = new RooWorkspace("wspace");

  wspace->factory("Gaussian::sigCons(prime_SigEff[0,-5,5], nom_SigEff[0,-5,5], 1)");
  wspace->factory("expr::SigEff('1.0*pow(1.20,@0)',prime_SigEff)"); // // 1+-20%, 1.20=exp(20%)

  wspace->factory("Poisson::on(non[0,50], sum::splusb(prod::SigUnc(s[0,0,50],SigEff),mainb[8.8,0,50],dilep[0.9,0,20],tau[2.3,0,20],QCD[0.,0,10],MC[0.1,0,4]))");

  wspace->factory("Gaussian::mcCons(prime_rho[0,-5,5], nom_rho[0,-5,5], 1)");
  wspace->factory("expr::rho('1.0*pow(1.39,@0)',prime_rho)"); // // 1+-39%
  wspace->factory("Poisson::off(noff[0,200], prod::rhob(mainb,rho,mu_plus_e[0.74,0.01,10],1.08))");
  wspace->factory("Gaussian::mcCons2(mu_plus_enom[0.74,0.01,4], mu_plus_e, sigmatwo[.05])");

  wspace->factory("Gaussian::dilep_pred(dilep_nom[0.9,0,20], dilep, sigma3[2.2])");
  wspace->factory("Gaussian::tau_pred(tau_nom[2.3,0,20], tau, sigma4[0.5])");
  wspace->factory("Gaussian::QCD_pred(QCD_nom[0.0,0,10], QCD, sigma5[1.0])");
  wspace->factory("Gaussian::MC_pred(MC_nom[0.1,0.01,4], MC, sigma7[0.14])");

  wspace->factory("PROD::model(on,off,mcCons,mcCons2,sigCons,dilep_pred,tau_pred,QCD_pred,MC_pred)");

  RooArgSet obs(*wspace->var("non"), *wspace->var("noff"), *wspace->var("mu_plus_enom"), *wspace->var("dilep_nom"), *wspace->var("tau_nom"), "obs");
  obs.add(*wspace->var("QCD_nom"));  obs.add(*wspace->var("MC_nom"));
  RooArgSet globalObs(*wspace->var("nom_SigEff"), *wspace->var("nom_rho"), "global_obs");
  // fix global observables to their nominal values
  wspace->var("nom_SigEff")->setConstant();
  wspace->var("nom_rho")->setConstant();

  RooArgSet poi(*wspace->var("s"), "poi");
  RooArgSet nuis(*wspace->var("mainb"), *wspace->var("prime_rho"), *wspace->var("prime_SigEff"), *wspace->var("mu_plus_e"), *wspace->var("dilep"), *wspace->var("tau"), "nuis");
  nuis.add(*wspace->var("QCD"));  nuis.add(*wspace->var("MC"));


  wspace->factory("Uniform::prior_poi({s})");
  wspace->factory("Uniform::prior_nuis({mainb,mu_plus_e,dilep,tau,QCD,MC})");
  wspace->factory("PROD::prior(prior_poi,prior_nuis)");

  wspace->var("non")->setVal(8); //observed
  //wspace->var("non")->setVal(12); //expected observation
  wspace->var("noff")->setVal(7); //observed events in control region
  wspace->var("mu_plus_enom")->setVal(0.74);
  wspace->var("dilep_nom")->setVal(0.9);
  wspace->var("tau_nom")->setVal(2.3);
  wspace->var("QCD")->setVal(0.0);
  wspace->var("MC")->setVal(0.1);


  RooDataSet * data = new RooDataSet("data","",obs);
  data->add(obs);
  wspace->import(*data);


  /////////////////////////////////////////////////////
  // Now the statistical tests
  // model config
  ModelConfig* pSbModel = new ModelConfig("SbModel");
  pSbModel->SetWorkspace(*wspace);
  pSbModel->SetPdf(*wspace->pdf("model"));
  pSbModel->SetPriorPdf(*wspace->pdf("prior"));
  pSbModel->SetParametersOfInterest(poi);
  pSbModel->SetNuisanceParameters(nuis);
  pSbModel->SetObservables(obs);
  pSbModel->SetGlobalObservables(globalObs);
  wspace->import(*pSbModel);

  // set all but obs, poi and nuisance to const
  SetConstants(wspace, pSbModel);
  wspace->import(*pSbModel);


  Double_t poiValueForBModel = 0.0;
  ModelConfig* pBModel = new ModelConfig(*(RooStats::ModelConfig *)wspace->obj("SbModel"));
  pBModel->SetName("BModel");
  pBModel->SetWorkspace(*wspace);
  wspace->import(*pBModel);


  RooAbsReal * pNll = pSbModel->GetPdf()->createNLL(*data);
  RooAbsReal * pProfile = pNll->createProfile(RooArgSet());
  pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
  RooArgSet * pPoiAndNuisance = new RooArgSet();
  //if(pSbModel->GetNuisanceParameters())
  //  pPoiAndNuisance->add(*pSbModel->GetNuisanceParameters());
  pPoiAndNuisance->add(*pSbModel->GetParametersOfInterest());
  cout << "\nWill save these parameter points that correspond to the fit to data" << endl;
  pPoiAndNuisance->Print("v");
  pSbModel->SetSnapshot(*pPoiAndNuisance);
  delete pProfile;
  delete pNll;
  delete pPoiAndNuisance;


//.........这里部分代码省略.........
开发者ID:pbgeff,项目名称:UserCode,代码行数:101,代码来源:create_tight.C


注:本文中的ModelConfig::GetPdf方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。