本文整理汇总了C++中Matrix3::col方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3::col方法的具体用法?C++ Matrix3::col怎么用?C++ Matrix3::col使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Matrix3
的用法示例。
在下文中一共展示了Matrix3::col方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: testRawDataAcces
bool testRawDataAcces() {
bool passed = true;
Eigen::Matrix<Scalar, 4, 1> raw = {0, 1, 0, 0};
Eigen::Map<RxSO3Type const> map_of_const_rxso3(raw.data());
SOPHUS_TEST_APPROX(passed, map_of_const_rxso3.quaternion().coeffs().eval(),
raw, Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_const_rxso3.quaternion().coeffs().data(),
raw.data());
Eigen::Map<RxSO3Type const> const_shallow_copy = map_of_const_rxso3;
SOPHUS_TEST_EQUAL(passed, const_shallow_copy.quaternion().coeffs().eval(),
map_of_const_rxso3.quaternion().coeffs().eval());
Eigen::Matrix<Scalar, 4, 1> raw2 = {1, 0, 0, 0};
Eigen::Map<RxSO3Type> map_of_rxso3(raw.data());
Eigen::Quaternion<Scalar> quat;
quat.coeffs() = raw2;
map_of_rxso3.setQuaternion(quat);
SOPHUS_TEST_APPROX(passed, map_of_rxso3.quaternion().coeffs().eval(), raw2,
Constants<Scalar>::epsilon());
SOPHUS_TEST_EQUAL(passed, map_of_rxso3.quaternion().coeffs().data(),
raw.data());
SOPHUS_TEST_NEQ(passed, map_of_rxso3.quaternion().coeffs().data(),
quat.coeffs().data());
Eigen::Map<RxSO3Type> shallow_copy = map_of_rxso3;
SOPHUS_TEST_EQUAL(passed, shallow_copy.quaternion().coeffs().eval(),
map_of_rxso3.quaternion().coeffs().eval());
RxSO3Type const const_so3(quat);
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
}
RxSO3Type so3(quat);
for (int i = 0; i < 4; ++i) {
so3.data()[i] = raw[i];
}
for (int i = 0; i < 4; ++i) {
SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
}
for (int i = 0; i < 10; ++i) {
Matrix3<Scalar> M = Matrix3<Scalar>::Random();
for (Scalar scale : {Scalar(0.01), Scalar(0.99), Scalar(1), Scalar(10)}) {
Matrix3<Scalar> R = makeRotationMatrix(M);
Matrix3<Scalar> sR = scale * R;
SOPHUS_TEST(passed, isScaledOrthogonalAndPositive(sR),
"isScaledOrthogonalAndPositive(sR): % *\n%", scale, R);
Matrix3<Scalar> sR_cols_swapped;
sR_cols_swapped << sR.col(1), sR.col(0), sR.col(2);
SOPHUS_TEST(passed, !isScaledOrthogonalAndPositive(sR_cols_swapped),
"isScaledOrthogonalAndPositive(-sR): % *\n%", scale, R);
}
}
return passed;
}
示例2:
void PointMesher<T>::Mesher::createFaceAttributes(const Matrix vList, const Matrix fList, Matrix& fAttrList, Labels& fAttrLabels) const
{
// Initialization
Matrix3 vp;
Vector3 vc;
Vector3 vn;
for (int i = 0; i < fList.cols(); i++)
{
// Get triangle
vp.col(0) = vList.col(int(fList(0, i)));
vp.col(1) = vList.col(int(fList(1, i)));
vp.col(2) = vList.col(int(fList(2, i)));
// Compute triangle centroid
vc = this->computeCentroid(vp);
// Compute normal at centroid
vn = this->computeNormal(vp);
// Generate data structure
fAttrList.block(0, i, 3, 1) = vc;
fAttrList.block(3, i, 3, 1) = vn;
}
fAttrLabels[0].text = "FaceCentroids";
fAttrLabels[0].span = 3;
fAttrLabels[1].text = "FaceNormals";
fAttrLabels[1].span = 3;
}
示例3: Scalar
template<typename Scalar> void orthomethods_3()
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random(),
v2 = Vector3::Random();
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(Vector3::Random()).dot(v1), Scalar(1));
Matrix3 mat3;
mat3 << v0.normalized(),
(v0.cross(v1)).normalized(),
(v0.cross(v1).cross(v0)).normalized();
VERIFY(mat3.isUnitary());
mat3.setRandom();
VERIFY_IS_APPROX(v0.cross(mat3*v1), -(mat3*v1).cross(v0));
VERIFY_IS_APPROX(v0.cross(mat3.lazyProduct(v1)), -(mat3.lazyProduct(v1)).cross(v0));
// colwise/rowwise cross product
mat3.setRandom();
Vector3 vec3 = Vector3::Random();
Matrix3 mcross;
int i = internal::random<int>(0,2);
mcross = mat3.colwise().cross(vec3);
VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(vec3)).diagonal().cwiseAbs().sum(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(Vector3::Random())).diagonal().cwiseAbs().sum(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * mat3.colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * Matrix3::Random().colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1));
mcross = mat3.rowwise().cross(vec3);
VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
// cross3
Vector4 v40 = Vector4::Random(),
v41 = Vector4::Random(),
v42 = Vector4::Random();
v40.w() = v41.w() = v42.w() = 0;
v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>());
VERIFY_IS_APPROX(v40.cross3(v41), v42);
VERIFY_IS_MUCH_SMALLER_THAN(v40.cross3(Vector4::Random()).dot(v40), Scalar(1));
// check mixed product
typedef Matrix<RealScalar, 3, 1> RealVector3;
RealVector3 rv1 = RealVector3::Random();
VERIFY_IS_APPROX(v1.cross(rv1.template cast<Scalar>()), v1.cross(rv1));
VERIFY_IS_APPROX(rv1.template cast<Scalar>().cross(v1), rv1.cross(v1));
}
示例4: calc_curvature
void Vert::calc_curvature() {
Edge *e = edge;
Matrix3 m = Matrix3();
double wij_sum = 0.0;
do {
Vector tij = ((Matrix3::identity() - Matrix3(normal(), normal())) * e->pair->vect()).unit();
double kij = 2 * normal().dot(e->pair->vect()) / pow(e->pair->vect().length(),2);
double wij = 0.0;
if (e->face != NULL) { wij += e->face->area(); }
if (e->pair->face != NULL) { wij += e->pair->face->area(); }
wij_sum += wij;
m = m + wij * kij * Matrix3(tij, tij);
e = e->pair->prev;
} while (e != edge);
m = m / wij_sum;
Vector e1 = Vector(1, 0, 0);
Vector wvi;
if ((e1 - normal()).length() > (e1 + normal()).length()) {
wvi = (e1 - normal()).unit();
} else {
wvi = (e1 + normal()).unit();
}
Matrix3 qvi = Matrix3::identity() - 2 * Matrix3(wvi,wvi);
Matrix3 m2 = qvi.transpose() * m * qvi;
double m11 = m2.values[4],
m12 = m2.values[7],
m22 = m2.values[8],
beta = (m22 - m11) / 2 / m12,
t = sign(beta) / (abs(beta) + sqrt(pow(beta, 2) + 1)),
c = 1.0 / sqrt(pow(t,2) + 1),
s = c * t,
m11_p = pow(c,2) * m11 + pow(s,2) * m22 - 2 * c * s * m12,
m22_p = pow(s,2) * m11 + pow(c,2) * m22 + 2 * c * s * m12,
phi = atan(t),
k1_p = 3 * m11_p - m22_p,
k2_p = 3 * m22_p - m11_p;
if (k1_p < k2_p) {
mem_max_curvature_mag = k1_p;
mem_max_curvature_dir = cos(phi) * qvi.col(1) - sin(phi) * qvi.col(2);
mem_min_curvature_mag = k2_p;
mem_min_curvature_dir = sin(phi) * qvi.col(1) + cos(phi) * qvi.col(2);
} else {
mem_max_curvature_mag = k2_p;
mem_max_curvature_dir = sin(phi) * qvi.col(1) + cos(phi) * qvi.col(2);
mem_min_curvature_mag = k1_p;
mem_min_curvature_dir = cos(phi) * qvi.col(1) - sin(phi) * qvi.col(2);
}
}
示例5: geometry
//.........这里部分代码省略.........
t0.scale(v0);
VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
// test transform inversion
t0.setIdentity();
t0.translate(v0);
t0.linear().setRandom();
VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
t0.setIdentity();
t0.translate(v0).rotate(q1);
VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
// test extract rotation and scaling
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
Matrix3 mat_rotation, mat_scaling;
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
t0.computeRotationScaling(&mat_rotation, &mat_scaling);
VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
t0.computeScalingRotation(&mat_scaling, &mat_rotation);
VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
// test casting
Transform<float,3> t1f = t1.template cast<float>();
VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
Transform<double,3> t1d = t1.template cast<double>();
VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
Translation3 tr1(v0);
Translation<float,3> tr1f = tr1.template cast<float>();
VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
Translation<double,3> tr1d = tr1.template cast<double>();
VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
Scaling3 sc1(v0);
Scaling<float,3> sc1f = sc1.template cast<float>();
VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
Scaling<double,3> sc1d = sc1.template cast<double>();
VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
Quaternion<float> q1f = q1.template cast<float>();
VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
Quaternion<double> q1d = q1.template cast<double>();
VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
AngleAxis<float> aa1f = aa1.template cast<float>();
VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
AngleAxis<double> aa1d = aa1.template cast<double>();
VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
Rotation2D<Scalar> r2d1(ei_random<Scalar>());
Rotation2D<float> r2d1f = r2d1.template cast<float>();
VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
Rotation2D<double> r2d1d = r2d1.template cast<double>();
VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
m = q1;
// m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
// m.col(0) = Vector3(-1,0,0).normalized();
// m.col(2) = m.col(0).cross(m.col(1));
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
Vector3 ea = m.eulerAngles(I,J,K); \
Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
VERIFY_IS_APPROX(m, m1); \
VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
}
VERIFY_EULER(0,1,2, X,Y,Z);
VERIFY_EULER(0,1,0, X,Y,X);
VERIFY_EULER(0,2,1, X,Z,Y);
VERIFY_EULER(0,2,0, X,Z,X);
VERIFY_EULER(1,2,0, Y,Z,X);
VERIFY_EULER(1,2,1, Y,Z,Y);
VERIFY_EULER(1,0,2, Y,X,Z);
VERIFY_EULER(1,0,1, Y,X,Y);
VERIFY_EULER(2,0,1, Z,X,Y);
VERIFY_EULER(2,0,2, Z,X,Z);
VERIFY_EULER(2,1,0, Z,Y,X);
VERIFY_EULER(2,1,2, Z,Y,Z);
// colwise/rowwise cross product
mat3.setRandom();
Vector3 vec3 = Vector3::Random();
Matrix3 mcross;
int i = ei_random<int>(0,2);
mcross = mat3.colwise().cross(vec3);
VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
mcross = mat3.rowwise().cross(vec3);
VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
}
示例6: if
// Original comment:
// Triangulation happens in 2d. We could inverse transform the polygon around the normal direction, or we just use the two
// most signficant axes. Here we find the two longest axes and use them to triangulate. Inverse transforming them would
// introduce more doubling point error and isn't worth it.
//
// SC says:
// This doesn't work: the vertices can be collinear when projected onto the plane of the two longest axes of the bounding box.
// Example (from real data):
//
// v[0] = (-13.7199, 4.45725, -8.00059)
// v[1] = (-0.115787, 12.3116, -4.96109)
// v[2] = (0.88992, 12.8922, -3.80342)
// v[3] = (-0.115787, 12.3116, -2.64576)
// v[4] = (-13.7199, 4.45725, 0.393742)
// v[5] = (-13.7199, 4.45725, -0.856258)
// v[6] = (-12.5335, 5.14221, -3.80342)
// v[7] = (-13.7199, 4.45725, -6.75059)
//
// Instead, we will project onto the plane of the polygon.
long
Polygon3::triangulate(Array<long> & tri_indices, Real epsilon) const
{
if (epsilon < 0)
epsilon = Math::eps<Real>();
if (vertices.size() < 3)
{
tri_indices.clear();
}
else if (vertices.size() == 3)
{
tri_indices.resize(3);
tri_indices[0] = vertices[0].index;
tri_indices[1] = vertices[1].index;
tri_indices[2] = vertices[2].index;
}
else if (vertices.size() > 3)
{
tri_indices.clear();
size_t n = vertices.size();
proj_vertices.resize(n);
Vector3 normal = computeNormal();
Matrix3 basis = Math::orthonormalBasis(normal);
Vector3 axis0 = basis.col(0);
Vector3 axis1 = basis.col(1);
Vector3 v0 = vertices[0].position; // a reference point for the plane of the polygon
for (size_t i = 0; i < n; ++i)
{
Vector3 v = vertices[i].position - v0;
proj_vertices[i] = Vector2(v.dot(axis0), v.dot(axis1));
}
Array<size_t> indices(n);
bool flipped = false;
if (projArea() > 0)
{
for (size_t v = 0; v < n; ++v)
indices[v] = v;
}
else
{
for (size_t v = 0; v < n; ++v)
indices[v] = (n - 1) - v;
flipped = true;
}
size_t nv = n;
size_t count = 2 * nv;
for (size_t v = nv - 1; nv > 2; )
{
if ((count--) <= 0)
break;
size_t u = v;
if (nv <= u) u = 0;
v = u + 1;
if (nv <= v) v = 0;
size_t w = v + 1;
if (nv <= w) w = 0;
if (snip(u, v, w, nv, indices, epsilon))
{
size_t a = indices[u];
size_t b = indices[v];
size_t c = indices[w];
if (flipped)
{
tri_indices.push_back(vertices[c].index);
tri_indices.push_back(vertices[b].index);
tri_indices.push_back(vertices[a].index);
}
else
{
tri_indices.push_back(vertices[a].index);
//.........这里部分代码省略.........