当前位置: 首页>>代码示例>>C++>>正文


C++ Matrix3::Transform方法代码示例

本文整理汇总了C++中Matrix3::Transform方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3::Transform方法的具体用法?C++ Matrix3::Transform怎么用?C++ Matrix3::Transform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Matrix3的用法示例。


在下文中一共展示了Matrix3::Transform方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: UpdateForceFromTensor

void Aero::UpdateForceFromTensor(RigidBody *body, marb duration,
                                 const Matrix3 &tensor) {
    // Calculate total velocity (windspeed and body's velocity).
    Vector3 velocity = body->GetVelocity();
    velocity += *windspeed;

    // Calculate the velocity in body coordinates
    Vector3 bodyVel = body->GetTransform().TransformInverseDirection(velocity);

    // Calculate the force in body coordinates
    Vector3 bodyForce = tensor.Transform(bodyVel);
    Vector3 force = body->GetTransform().TransformDirection(bodyForce);

    // Apply the force
    body->AddForceAtBodyPoint(force, position);
}
开发者ID:ChrisViqueira,项目名称:Marballs,代码行数:16,代码来源:fgen.cpp

示例2: velKill

inline Vector3 Contact::CalculateFrictionImpulse(Matrix3 * inverseInertiaTensor) {
    Vector3 impulseContact;
    marb inverseMass = body[0]->GetInverseMass();

    // The equivalent of a cross product in matrices is multiplication
    // by a skew symmetric matrix - we build the matrix for converting
    // between linear and angular quantities.
    Matrix3 impulseToTorque;
    impulseToTorque.SetSkewSymmetric(relativeContactPosition[0]);

    // Build the matrix to convert contact impulse to change in velocity
    // in world coordinates.
    Matrix3 deltaVelWorld = impulseToTorque;
    deltaVelWorld *= inverseInertiaTensor[0];
    deltaVelWorld *= impulseToTorque;
    deltaVelWorld *= -1;

    // Check if we need to add body two's data
    if (body[1]) {
        // Set the cross product matrix
        impulseToTorque.SetSkewSymmetric(relativeContactPosition[1]);

        // Calculate the velocity change matrix
        Matrix3 deltaVelWorld2 = impulseToTorque;
        deltaVelWorld2 *= inverseInertiaTensor[1];
        deltaVelWorld2 *= impulseToTorque;
        deltaVelWorld2 *= -1;

        // Add to the total delta velocity.
        deltaVelWorld += deltaVelWorld2;

        // Add to the inverse mass
        inverseMass += body[1]->GetInverseMass();
    }

    // Do a change of basis to convert into contact coordinates.
    Matrix3 deltaVelocity = contactToWorld.Transpose();
    deltaVelocity *= deltaVelWorld;
    deltaVelocity *= contactToWorld;

    // Add in the linear velocity change
    deltaVelocity.data[0] += inverseMass;
    deltaVelocity.data[4] += inverseMass;
    deltaVelocity.data[8] += inverseMass;

    // Invert to get the impulse needed per unit velocity
    Matrix3 impulseMatrix = deltaVelocity.Inverse();

    // Find the target velocities to kill
    Vector3 velKill(desiredDeltaVelocity,
        -contactVelocity.y,
        -contactVelocity.z);

    // Find the impulse to kill target velocities
    impulseContact = impulseMatrix.Transform(velKill);

    // Check for exceeding friction
    marb planarImpulse = marb_sqrt(impulseContact.y*impulseContact.y + impulseContact.z*impulseContact.z);

    if (planarImpulse > impulseContact.x * friction) {
        // We need to use dynamic friction
        impulseContact.y /= planarImpulse;
        impulseContact.z /= planarImpulse;

        impulseContact.x = deltaVelocity.data[0] + deltaVelocity.data[1]*friction*impulseContact.y
												 + deltaVelocity.data[2]*friction*impulseContact.z;
        impulseContact.x = desiredDeltaVelocity / impulseContact.x;
        impulseContact.y *= friction * impulseContact.x;
        impulseContact.z *= friction * impulseContact.x;
    }
    return impulseContact;
}
开发者ID:ChrisViqueira,项目名称:Marballs,代码行数:72,代码来源:contacts.cpp

示例3: ApplyPositionChange

void Contact::ApplyPositionChange(Vector3 linearChange[2], Vector3 angularChange[2], marb penetration) {
    const marb angularLimit = (marb)0.2f;
    marb angularMove[2];
    marb linearMove[2];

    marb totalInertia = 0;
    marb linearInertia[2];
    marb angularInertia[2];

    // We need to work out the inertia of each object in the direction
    // of the contact normal, due to angular inertia only.
    for (unsigned i = 0; i < 2; i++) if (body[i]) {
        Matrix3 inverseInertiaTensor;
        body[i]->GetInverseInertiaTensorWorld(&inverseInertiaTensor);

        // Use the same procedure as for calculating frictionless
        // velocity change to work out the angular inertia.
        Vector3 angularInertiaWorld =
            relativeContactPosition[i] % contactNormal;
        angularInertiaWorld =
            inverseInertiaTensor.Transform(angularInertiaWorld);
        angularInertiaWorld =
            angularInertiaWorld % relativeContactPosition[i];
        angularInertia[i] =
            angularInertiaWorld * contactNormal;

        // The linear component is simply the inverse mass
        linearInertia[i] = body[i]->GetInverseMass();

        // Keep track of the total inertia from all components
        totalInertia += linearInertia[i] + angularInertia[i];

        // We break the loop here so that the totalInertia value is
        // completely calculated (by both iterations) before
        // continuing.
    }

    // Loop through again calculating and applying the changes
    for (unsigned i = 0; i < 2; i++) if (body[i]) {
        // The linear and angular movements required are in proportion to
        // the two inverse inertias.
        marb sign = (i == 0)?1:-1;
        angularMove[i] =
            sign * penetration * (angularInertia[i] / totalInertia);
        linearMove[i] =
            sign * penetration * (linearInertia[i] / totalInertia);

        // To avoid angular projections that are too great (when mass is large
        // but inertia tensor is small) limit the angular move.
        Vector3 projection = relativeContactPosition[i];
        projection.AddScaledVector(
            contactNormal,
            -relativeContactPosition[i].ScalarProduct(contactNormal)
            );

        // Use the small angle approximation for the sine of the angle (i.e.
        // the magnitude would be sine(angularLimit) * projection.magnitude
        // but we approximate sine(angularLimit) to angularLimit).
        marb maxMagnitude = angularLimit * projection.Magnitude();

        if (angularMove[i] < -maxMagnitude) {
            marb totalMove = angularMove[i] + linearMove[i];
            angularMove[i] = -maxMagnitude;
            linearMove[i] = totalMove - angularMove[i];

        } else if (angularMove[i] > maxMagnitude) {
            marb totalMove = angularMove[i] + linearMove[i];
            angularMove[i] = maxMagnitude;
            linearMove[i] = totalMove - angularMove[i];
        }

        // We have the linear amount of movement required by turning
        // the rigid body (in angularMove[i]). We now need to
        // calculate the desired rotation to achieve that.
        if (angularMove[i] == 0) {
            // Easy case - no angular movement means no rotation.
            angularChange[i].Clear();

        } else {
            // Work out the direction we'd like to rotate in.
            Vector3 targetAngularDirection =
                relativeContactPosition[i].VectorProduct(contactNormal);

            Matrix3 inverseInertiaTensor;
            body[i]->GetInverseInertiaTensorWorld(&inverseInertiaTensor);

            // Work out the direction we'd need to rotate to achieve that
            angularChange[i] =
                inverseInertiaTensor.Transform(targetAngularDirection) *
                (angularMove[i] / angularInertia[i]);
        }

        // Velocity change is easier - it is just the linear movement
        // along the contact normal.
        linearChange[i] = contactNormal * linearMove[i];

        // Now we can start to apply the values we've calculated.
        // Apply the linear movement
        Vector3 pos;
        body[i]->GetPosition(&pos);
//.........这里部分代码省略.........
开发者ID:ChrisViqueira,项目名称:Marballs,代码行数:101,代码来源:contacts.cpp


注:本文中的Matrix3::Transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。