本文整理汇总了C++中Kinect::run方法的典型用法代码示例。如果您正苦于以下问题:C++ Kinect::run方法的具体用法?C++ Kinect::run怎么用?C++ Kinect::run使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Kinect
的用法示例。
在下文中一共展示了Kinect::run方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main( int argc, char* argv[] )
{
try{
Kinect kinect;
kinect.run();
} catch( std::exception& ex ){
std::cout << ex.what() << std::endl;
}
return 0;
}
示例2: main
int main(int argc, char* argv[])
{
signal(SIGINT, ctrlchandler);
signal(SIGTERM, killhandler);
icl_core::config::GetoptParameter ident_parameter("device-identifier:", "id",
"Identifer of the kinect device");
icl_core::config::addParameter(ident_parameter);
icl_core::logging::initialize(argc, argv);
std::string identifier = icl_core::config::Getopt::instance().paramOpt("device-identifier");
/*
* First, we generate an API class, which defines the
* volume of our space and the resolution.
* Be careful here! The size is limited by the memory
* of your GPU. Even if an empty Octree is small, a
* Voxelmap will always require the full memory.
*/
gvl = GpuVoxels::getInstance();
gvl->initialize(200, 200, 100, 0.02);
/*
* Now we add a map, that will represent the robot.
* The robot is inserted with deterministic poses,
* so a deterministic map is sufficient here.
*/
gvl->addMap(MT_BITVECTOR_VOXELMAP, "myRobotMap");
/*
* A second map will represent the environment.
* As it is captured by a sensor, this map is probabilistic.
*/
gvl->addMap(MT_BITVECTOR_OCTREE, "myEnvironmentMap");
/*
* Lets create a kinect driver and an according pointcloud.
* To allow easy transformation of the Kinect pose,
* we declare it as a robot and model a pan-tilt-unit.
*/
Kinect* kinect = new Kinect(identifier);
kinect->run();
std::vector<std::string> kinect_link_names(6);
kinect_link_names[0] = "z_translation";
kinect_link_names[1] = "y_translation";
kinect_link_names[2] = "x_translation";
kinect_link_names[3] = "pan";
kinect_link_names[4] = "tilt";
kinect_link_names[5] = "kinect";
std::vector<robot::DHParameters> kinect_dh_params(6);
kinect_dh_params[0] = robot::DHParameters(0.0, 0.0, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for Y translation
kinect_dh_params[1] = robot::DHParameters(0.0, -1.5708, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for X translation
kinect_dh_params[2] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::PRISMATIC); // Params for Pan axis
kinect_dh_params[3] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::REVOLUTE); // Params for Tilt axis
kinect_dh_params[4] = robot::DHParameters(0.0, 0.0, 0.0, -3.1415, 0.0, robot::REVOLUTE); // Params for Kinect
kinect_dh_params[5] = robot::DHParameters(0.0, 0.0, 0.0, 0.0, 0.0, robot::REVOLUTE); // Pseudo Param
robot::JointValueMap kinect_joints;
kinect_joints["z_translation"] = 0.6; // moves along the Z axis
kinect_joints["y_translation"] = 1.0; // moves along the Y Axis
kinect_joints["x_translation"] = 1.0; // moves along the X Axis
kinect_joints["pan"] = -0.7;
kinect_joints["tilt"] = 0.5;
std::vector<Vector3f> kinect_pc(640*480);
MetaPointCloud myKinectCloud;
myKinectCloud.addCloud(kinect_pc, true, kinect_link_names[5]);
gvl->addRobot("kinectData", kinect_link_names, kinect_dh_params, myKinectCloud);
/*
* Of course, we need a robot. At this point, you can choose between
* describing your robot via ROS URDF or via conventional DH parameter.
* In this example, we simply hardcode a DH robot:
*/
// First, we load the robot geometry which contains 9 links with 7 geometries:
// Geometries are required to have the same names as links, if they should get transformed.
std::vector<std::string> linknames(10);
std::vector<std::string> paths_to_pointclouds(7);
linknames[0] = "z_translation";
linknames[1] = "y_translation";
linknames[2] = "x_translation";
linknames[3] = paths_to_pointclouds[0] = "hollie/arm_0_link.xyz";
linknames[4] = paths_to_pointclouds[1] = "hollie/arm_1_link.xyz";
linknames[5] = paths_to_pointclouds[2] = "hollie/arm_2_link.xyz";
linknames[6] = paths_to_pointclouds[3] = "hollie/arm_3_link.xyz";
linknames[7] = paths_to_pointclouds[4] = "hollie/arm_4_link.xyz";
linknames[8] = paths_to_pointclouds[5] = "hollie/arm_5_link.xyz";
linknames[9] = paths_to_pointclouds[6] = "hollie/arm_6_link.xyz";
std::vector<robot::DHParameters> dh_params(10);
// _d, _theta, _a, _alpha, _value, _type
dh_params[0] = robot::DHParameters(0.0, 0.0, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for Y translation
dh_params[1] = robot::DHParameters(0.0, -1.5708, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for X translation
dh_params[2] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::PRISMATIC); // Params for first Robot axis (visualized by 0_link)
dh_params[3] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::REVOLUTE); // Params for second Robot axis (visualized by 1_link)
dh_params[4] = robot::DHParameters(0.0, 0.0, 0.35, -3.1415, 0.0, robot::REVOLUTE); //
//.........这里部分代码省略.........