本文整理汇总了C++中Kinect::getDataPtr方法的典型用法代码示例。如果您正苦于以下问题:C++ Kinect::getDataPtr方法的具体用法?C++ Kinect::getDataPtr怎么用?C++ Kinect::getDataPtr使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Kinect
的用法示例。
在下文中一共展示了Kinect::getDataPtr方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
// initialize the joint interpolation
std::size_t counter = 0;
const float ratio_delta = 0.02;
robot::JointValueMap min_joint_values;
min_joint_values["z_translation"] = 0.0; // moves along the Z axis
min_joint_values["y_translation"] = 0.5; // moves along the Y Axis
min_joint_values["x_translation"] = 0.5; // moves along the X Axis
min_joint_values["hollie/arm_0_link.xyz"] = 1.0;
min_joint_values["hollie/arm_1_link.xyz"] = 1.0;
min_joint_values["hollie/arm_2_link.xyz"] = 1.0;
min_joint_values["hollie/arm_3_link.xyz"] = 1.0;
min_joint_values["hollie/arm_4_link.xyz"] = 1.0;
min_joint_values["hollie/arm_5_link.xyz"] = 1.0;
min_joint_values["hollie/arm_6_link.xyz"] = 1.0;
robot::JointValueMap max_joint_values;
max_joint_values["z_translation"] = 0.0; // moves along the Z axis
max_joint_values["y_translation"] = 2.5; // moves along the Y axis
max_joint_values["x_translation"] = 2.5; // moves along the X Axis
max_joint_values["hollie/arm_0_link.xyz"] = 1.5;
max_joint_values["hollie/arm_1_link.xyz"] = 1.5;
max_joint_values["hollie/arm_2_link.xyz"] = 1.5;
max_joint_values["hollie/arm_3_link.xyz"] = 1.5;
max_joint_values["hollie/arm_4_link.xyz"] = 1.5;
max_joint_values["hollie/arm_5_link.xyz"] = 1.5;
max_joint_values["hollie/arm_6_link.xyz"] = 1.5;
const int num_swept_volumes = 50;// < BIT_VECTOR_LENGTH;
/*
* SWEPT VOLUME:
* The robot moves and changes it's pose, so we "voxelize"
* the links in every step and insert it into the robot map.
* As the map is not cleared, this will generate a sweep.
* The ID within the sweep is incremented with the single poses
* so we can later identify, which pose created a collision.
*/
LOGGING_INFO(Gpu_voxels, "Generating Swept Volume..." << endl);
robot::JointValueMap myRobotJointValues;
for (int i = 0; i < num_swept_volumes; ++i)
{
myRobotJointValues = gpu_voxels::interpolateLinear(min_joint_values, max_joint_values,
ratio_delta * counter++);
gvl->setRobotConfiguration("myRobot", myRobotJointValues);
BitVoxelMeaning v = BitVoxelMeaning(eBVM_SWEPT_VOLUME_START + 1 + i);
gvl->insertRobotIntoMap("myRobot", "myRobotMap", v);
}
/*
* MAIN LOOP:
* In this loop we update the Kinect Pointcloud
* and collide it with the Swept-Volume of the robot.
*/
LOGGING_INFO(Gpu_voxels, "Starting collision detection..." << endl);
while (true)
{
// Insert Kinect data (in cam-coordinate system)
gvl->updateRobotPart("kinectData", "kinect", kinect->getDataPtr());
// Call setRobotConfiguration to trigger transformation of Kinect data:
gvl->setRobotConfiguration("kinectData", kinect_joints);
// Insert the Kinect data (now in world coordinates) into the map
gvl->insertRobotIntoMap("kinectData", "myEnvironmentMap", eBVM_OCCUPIED);
size_t num_cols = 0;
BitVectorVoxel collision_types;
num_cols = gvl->getMap("myEnvironmentMap")->as<NTree::GvlNTreeDet>()->collideWithTypes(gvl->getMap("myRobotMap")->as<voxelmap::BitVectorVoxelMap>(), collision_types, 1.0f);
LOGGING_INFO(Gpu_voxels, "Collsions: " << num_cols << endl);
printf("Voxel types in collision:\n");
DrawTypes draw_types;
for(size_t i = 0; i < BIT_VECTOR_LENGTH; ++i)
{
if(collision_types.bitVector().getBit(i))
{
draw_types.draw_types[i] = 1;
printf("%lu; ", i);
}
}
printf("\n");
// this informs the visualizer which Sub-Volumes should be rendered
gvl->getVisualization("myRobotMap")->setDrawTypes(draw_types);
// tell the visualizer that the data has changed.
gvl->visualizeMap("myRobotMap");
gvl->visualizeMap("myEnvironmentMap");
usleep(10000);
// We only clear the environment to update it with new Kinect data.
// The robot maps stays static to not loose the Sweeps.
gvl->clearMap("myEnvironmentMap");
}
}