本文整理汇总了C++中GrPaint::setDisableOutputConversionToSRGB方法的典型用法代码示例。如果您正苦于以下问题:C++ GrPaint::setDisableOutputConversionToSRGB方法的具体用法?C++ GrPaint::setDisableOutputConversionToSRGB怎么用?C++ GrPaint::setDisableOutputConversionToSRGB使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GrPaint
的用法示例。
在下文中一共展示了GrPaint::setDisableOutputConversionToSRGB方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: refAsTexture
GrTexture* GrYUVProvider::refAsTexture(GrContext* ctx, const GrSurfaceDesc& desc, bool useCache) {
SkYUVPlanesCache::Info yuvInfo;
void* planes[3];
YUVScoper scoper;
if (!scoper.init(this, &yuvInfo, planes, useCache)) {
return nullptr;
}
GrSurfaceDesc yuvDesc;
yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
SkAutoTUnref<GrTexture> yuvTextures[3];
for (int i = 0; i < 3; i++) {
yuvDesc.fWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth;
yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
// TODO: why do we need this check?
bool needsExactTexture =
(yuvDesc.fWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
(yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
if (needsExactTexture) {
yuvTextures[i].reset(ctx->textureProvider()->createTexture(yuvDesc, SkBudgeted::kYes));
} else {
yuvTextures[i].reset(ctx->textureProvider()->createApproxTexture(yuvDesc));
}
if (!yuvTextures[i] ||
!yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig,
planes[i], yuvInfo.fSizeInfo.fWidthBytes[i])) {
return nullptr;
}
}
GrSurfaceDesc rtDesc = desc;
rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrSurfaceFlag;
SkAutoTUnref<GrTexture> result(ctx->textureProvider()->createTexture(rtDesc, SkBudgeted::kYes,
nullptr, 0));
if (!result) {
return nullptr;
}
GrRenderTarget* renderTarget = result->asRenderTarget();
SkASSERT(renderTarget);
GrPaint paint;
// We may be decoding an sRGB image, but the result of our linear math on the YUV planes
// is already in sRGB in that case. Don't convert (which will make the image too bright).
paint.setDisableOutputConversionToSRGB(true);
SkAutoTUnref<const GrFragmentProcessor> yuvToRgbProcessor(
GrYUVEffect::CreateYUVToRGB(yuvTextures[0],
yuvTextures[1],
yuvTextures[2],
yuvInfo.fSizeInfo.fSizes,
yuvInfo.fColorSpace));
paint.addColorFragmentProcessor(yuvToRgbProcessor);
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
SkAutoTUnref<GrDrawContext> drawContext(ctx->drawContext(renderTarget));
if (!drawContext) {
return nullptr;
}
drawContext->drawRect(GrClip::WideOpen(), paint, SkMatrix::I(), r);
return result.release();
}
示例2: drawContext
sk_sp<GrTexture> GrYUVProvider::refAsTexture(GrContext* ctx,
const GrSurfaceDesc& desc,
bool useCache) {
SkYUVPlanesCache::Info yuvInfo;
void* planes[3];
YUVScoper scoper;
if (!scoper.init(this, &yuvInfo, planes, useCache)) {
return nullptr;
}
GrSurfaceDesc yuvDesc;
yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
SkAutoTUnref<GrTexture> yuvTextures[3];
for (int i = 0; i < 3; i++) {
yuvDesc.fWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth;
yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
// TODO: why do we need this check?
bool needsExactTexture =
(yuvDesc.fWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
(yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
if (needsExactTexture) {
yuvTextures[i].reset(ctx->textureProvider()->createTexture(yuvDesc, SkBudgeted::kYes));
} else {
yuvTextures[i].reset(ctx->textureProvider()->createApproxTexture(yuvDesc));
}
if (!yuvTextures[i] ||
!yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig,
planes[i], yuvInfo.fSizeInfo.fWidthBytes[i])) {
return nullptr;
}
}
sk_sp<GrDrawContext> drawContext(ctx->newDrawContext(SkBackingFit::kExact,
desc.fWidth, desc.fHeight,
desc.fConfig, desc.fSampleCnt));
if (!drawContext) {
return nullptr;
}
GrPaint paint;
sk_sp<GrFragmentProcessor> yuvToRgbProcessor(
GrYUVEffect::MakeYUVToRGB(yuvTextures[0], yuvTextures[1], yuvTextures[2],
yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false));
paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));
// If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
// in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
// to output the results of that math directly to the buffer that we will then consider sRGB.
// If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
// Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
// then let the HW convert Linear -> sRGB.
if (GrPixelConfigIsSRGB(desc.fConfig)) {
if (ctx->caps()->srgbWriteControl()) {
paint.setDisableOutputConversionToSRGB(true);
} else {
paint.addColorFragmentProcessor(GrGammaEffect::Make(2.2f));
}
}
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
drawContext->drawRect(GrNoClip(), paint, SkMatrix::I(), r);
return drawContext->asTexture();
}
示例3: pixmap
sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx, const GrSurfaceDesc& desc,
const SkColorSpace* srcColorSpace,
const SkColorSpace* dstColorSpace) {
SkYUVPlanesCache::Info yuvInfo;
void* planes[3];
sk_sp<SkCachedData> dataStorage = init_provider(this, &yuvInfo, planes);
if (!dataStorage) {
return nullptr;
}
sk_sp<GrTextureProxy> yuvTextureProxies[3];
for (int i = 0; i < 3; i++) {
int componentWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth;
int componentHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
// If the sizes of the components are not all the same we choose to create exact-match
// textures for the smaller onces rather than add a texture domain to the draw.
// TODO: revisit this decision to imporve texture reuse?
SkBackingFit fit =
(componentWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
(componentHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight)
? SkBackingFit::kExact : SkBackingFit::kApprox;
SkImageInfo imageInfo = SkImageInfo::MakeA8(componentWidth, componentHeight);
SkPixmap pixmap(imageInfo, planes[i], yuvInfo.fSizeInfo.fWidthBytes[i]);
SkCachedData* dataStoragePtr = dataStorage.get();
// We grab a ref to cached yuv data. When the SkImage we create below goes away it will call
// the YUVGen_DataReleaseProc which will release this ref.
// DDL TODO: Currently we end up creating a lazy proxy that will hold onto a ref to the
// SkImage in its lambda. This means that we'll keep the ref on the YUV data around for the
// life time of the proxy and not just upload. For non-DDL draws we should look into
// releasing this SkImage after uploads (by deleting the lambda after instantiation).
dataStoragePtr->ref();
sk_sp<SkImage> yuvImage = SkImage::MakeFromRaster(pixmap, YUVGen_DataReleaseProc,
dataStoragePtr);
auto proxyProvider = ctx->contextPriv().proxyProvider();
yuvTextureProxies[i] = proxyProvider->createTextureProxy(yuvImage, kNone_GrSurfaceFlags,
kTopLeft_GrSurfaceOrigin,
1, SkBudgeted::kYes, fit);
}
// We never want to perform color-space conversion during the decode. However, if the proxy
// config is sRGB then we must use a sRGB color space.
sk_sp<SkColorSpace> colorSpace;
if (GrPixelConfigIsSRGB(desc.fConfig)) {
colorSpace = SkColorSpace::MakeSRGB();
}
// TODO: investigate preallocating mip maps here
sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeDeferredRenderTargetContext(
SkBackingFit::kExact, desc.fWidth, desc.fHeight, desc.fConfig, std::move(colorSpace),
desc.fSampleCnt, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin));
if (!renderTargetContext) {
return nullptr;
}
GrPaint paint;
auto yuvToRgbProcessor =
GrYUVtoRGBEffect::Make(std::move(yuvTextureProxies[0]),
std::move(yuvTextureProxies[1]),
std::move(yuvTextureProxies[2]),
yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false);
paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));
// If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
// in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
// to output the results of that math directly to the buffer that we will then consider sRGB.
// If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
// Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
// then let the HW convert Linear -> sRGB.
if (GrPixelConfigIsSRGB(desc.fConfig)) {
if (ctx->caps()->srgbWriteControl()) {
paint.setDisableOutputConversionToSRGB(true);
} else {
paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear,
GrSRGBEffect::Alpha::kOpaque));
}
}
// If the caller expects the pixels in a different color space than the one from the image,
// apply a color conversion to do this.
std::unique_ptr<GrFragmentProcessor> colorConversionProcessor =
GrNonlinearColorSpaceXformEffect::Make(srcColorSpace, dstColorSpace);
if (colorConversionProcessor) {
paint.addColorFragmentProcessor(std::move(colorConversionProcessor));
}
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r);
return renderTargetContext->asTextureProxyRef();
}