本文整理汇总了C++中AffineTransform::makeIdentity方法的典型用法代码示例。如果您正苦于以下问题:C++ AffineTransform::makeIdentity方法的具体用法?C++ AffineTransform::makeIdentity怎么用?C++ AffineTransform::makeIdentity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AffineTransform
的用法示例。
在下文中一共展示了AffineTransform::makeIdentity方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: resetToBaseValue
void SVGAnimateMotionElement::resetToBaseValue(const String&)
{
if (!hasValidAttributeType())
return;
AffineTransform* transform = targetElement()->supplementalTransform();
if (!transform)
return;
transform->makeIdentity();
}
示例2: calculateAnimatedValue
void SVGAnimateMotionElement::calculateAnimatedValue(float percentage, unsigned, SVGSMILElement*)
{
SVGElement* targetElement = this->targetElement();
if (!targetElement)
return;
AffineTransform* transform = targetElement->supplementalTransform();
if (!transform)
return;
if (RenderObject* targetRenderer = targetElement->renderer())
targetRenderer->setNeedsTransformUpdate();
if (!isAdditive())
transform->makeIdentity();
// FIXME: Implement accumulate.
if (animationMode() == PathAnimation) {
ASSERT(!animationPath().isEmpty());
Path path = animationPath();
float positionOnPath = path.length() * percentage;
bool ok;
FloatPoint position = path.pointAtLength(positionOnPath, ok);
if (ok) {
transform->translate(position.x(), position.y());
RotateMode rotateMode = this->rotateMode();
if (rotateMode == RotateAuto || rotateMode == RotateAutoReverse) {
float angle = path.normalAngleAtLength(positionOnPath, ok);
if (rotateMode == RotateAutoReverse)
angle += 180;
transform->rotate(angle);
}
}
return;
}
FloatSize diff = m_toPoint - m_fromPoint;
transform->translate(diff.width() * percentage + m_fromPoint.x(), diff.height() * percentage + m_fromPoint.y());
}
示例3: calculateAnimatedValue
void SVGAnimateMotionElement::calculateAnimatedValue(float percentage, unsigned repeatCount, SVGSMILElement*)
{
SVGElement* targetElement = this->targetElement();
if (!targetElement)
return;
AffineTransform* transform = targetElement->supplementalTransform();
if (!transform)
return;
if (RenderObject* targetRenderer = targetElement->renderer())
targetRenderer->setNeedsTransformUpdate();
if (!isAdditive())
transform->makeIdentity();
if (animationMode() != PathAnimation) {
FloatPoint toPointAtEndOfDuration = m_toPoint;
if (isAccumulated() && repeatCount && m_hasToPointAtEndOfDuration)
toPointAtEndOfDuration = m_toPointAtEndOfDuration;
float animatedX = 0;
animateAdditiveNumber(percentage, repeatCount, m_fromPoint.x(), m_toPoint.x(), toPointAtEndOfDuration.x(), animatedX);
float animatedY = 0;
animateAdditiveNumber(percentage, repeatCount, m_fromPoint.y(), m_toPoint.y(), toPointAtEndOfDuration.y(), animatedY);
transform->translate(animatedX, animatedY);
return;
}
buildTransformForProgress(transform, percentage);
// Handle accumulate="sum".
if (isAccumulated() && repeatCount) {
for (unsigned i = 0; i < repeatCount; ++i)
buildTransformForProgress(transform, 1);
}
}
示例4: decomposeArcToCubic
// This works by converting the SVG arc to "simple" beziers.
// Partly adapted from Niko's code in kdelibs/kdecore/svgicons.
// See also SVG implementation notes: http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
bool SVGPathParser::decomposeArcToCubic(float angle, float rx, float ry, FloatPoint& point1, FloatPoint& point2, bool largeArcFlag, bool sweepFlag)
{
FloatSize midPointDistance = point1 - point2;
midPointDistance.scale(0.5f);
AffineTransform pointTransform;
pointTransform.rotate(-angle);
FloatPoint transformedMidPoint = pointTransform.mapPoint(FloatPoint(midPointDistance.width(), midPointDistance.height()));
float squareRx = rx * rx;
float squareRy = ry * ry;
float squareX = transformedMidPoint.x() * transformedMidPoint.x();
float squareY = transformedMidPoint.y() * transformedMidPoint.y();
// Check if the radii are big enough to draw the arc, scale radii if not.
// http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
float radiiScale = squareX / squareRx + squareY / squareRy;
if (radiiScale > 1) {
rx *= sqrtf(radiiScale);
ry *= sqrtf(radiiScale);
}
pointTransform.makeIdentity();
pointTransform.scale(1 / rx, 1 / ry);
pointTransform.rotate(-angle);
point1 = pointTransform.mapPoint(point1);
point2 = pointTransform.mapPoint(point2);
FloatSize delta = point2 - point1;
float d = delta.width() * delta.width() + delta.height() * delta.height();
float scaleFactorSquared = std::max(1 / d - 0.25f, 0.f);
float scaleFactor = sqrtf(scaleFactorSquared);
if (sweepFlag == largeArcFlag)
scaleFactor = -scaleFactor;
delta.scale(scaleFactor);
FloatPoint centerPoint = point1 + point2;
centerPoint.scale(0.5f);
centerPoint.move(-delta.height(), delta.width());
float theta1 = FloatPoint(point1 - centerPoint).slopeAngleRadians();
float theta2 = FloatPoint(point2 - centerPoint).slopeAngleRadians();
float thetaArc = theta2 - theta1;
if (thetaArc < 0 && sweepFlag)
thetaArc += 2 * piFloat;
else if (thetaArc > 0 && !sweepFlag)
thetaArc -= 2 * piFloat;
pointTransform.makeIdentity();
pointTransform.rotate(angle);
pointTransform.scale(rx, ry);
// Some results of atan2 on some platform implementations are not exact enough. So that we get more
// cubic curves than expected here. Adding 0.001f reduces the count of sgements to the correct count.
int segments = ceilf(fabsf(thetaArc / (piOverTwoFloat + 0.001f)));
for (int i = 0; i < segments; ++i) {
float startTheta = theta1 + i * thetaArc / segments;
float endTheta = theta1 + (i + 1) * thetaArc / segments;
float t = (8 / 6.f) * tanf(0.25f * (endTheta - startTheta));
if (!std::isfinite(t))
return false;
float sinStartTheta = sinf(startTheta);
float cosStartTheta = cosf(startTheta);
float sinEndTheta = sinf(endTheta);
float cosEndTheta = cosf(endTheta);
point1 = FloatPoint(cosStartTheta - t * sinStartTheta, sinStartTheta + t * cosStartTheta);
point1.move(centerPoint.x(), centerPoint.y());
FloatPoint targetPoint = FloatPoint(cosEndTheta, sinEndTheta);
targetPoint.move(centerPoint.x(), centerPoint.y());
point2 = targetPoint;
point2.move(t * sinEndTheta, -t * cosEndTheta);
m_consumer.curveToCubic(pointTransform.mapPoint(point1), pointTransform.mapPoint(point2),
pointTransform.mapPoint(targetPoint), AbsoluteCoordinates);
}
return true;
}
示例5: decomposeArcToCubic
// This works by converting the SVG arc to "simple" beziers.
// Partly adapted from Niko's code in kdelibs/kdecore/svgicons.
// See also SVG implementation notes:
// http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
bool SVGPathNormalizer::decomposeArcToCubic(const FloatPoint& currentPoint,
const PathSegmentData& arcSegment) {
// If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a
// "lineto") joining the endpoints.
// http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
float rx = fabsf(arcSegment.arcRadii().x());
float ry = fabsf(arcSegment.arcRadii().y());
if (!rx || !ry)
return false;
// If the current point and target point for the arc are identical, it should
// be treated as a zero length path. This ensures continuity in animations.
if (arcSegment.targetPoint == currentPoint)
return false;
float angle = arcSegment.arcAngle();
FloatSize midPointDistance = currentPoint - arcSegment.targetPoint;
midPointDistance.scale(0.5f);
AffineTransform pointTransform;
pointTransform.rotate(-angle);
FloatPoint transformedMidPoint = pointTransform.mapPoint(
FloatPoint(midPointDistance.width(), midPointDistance.height()));
float squareRx = rx * rx;
float squareRy = ry * ry;
float squareX = transformedMidPoint.x() * transformedMidPoint.x();
float squareY = transformedMidPoint.y() * transformedMidPoint.y();
// Check if the radii are big enough to draw the arc, scale radii if not.
// http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
float radiiScale = squareX / squareRx + squareY / squareRy;
if (radiiScale > 1) {
rx *= sqrtf(radiiScale);
ry *= sqrtf(radiiScale);
}
pointTransform.makeIdentity();
pointTransform.scale(1 / rx, 1 / ry);
pointTransform.rotate(-angle);
FloatPoint point1 = pointTransform.mapPoint(currentPoint);
FloatPoint point2 = pointTransform.mapPoint(arcSegment.targetPoint);
FloatSize delta = point2 - point1;
float d = delta.width() * delta.width() + delta.height() * delta.height();
float scaleFactorSquared = std::max(1 / d - 0.25f, 0.f);
float scaleFactor = sqrtf(scaleFactorSquared);
if (arcSegment.arcSweep == arcSegment.arcLarge)
scaleFactor = -scaleFactor;
delta.scale(scaleFactor);
FloatPoint centerPoint = point1 + point2;
centerPoint.scale(0.5f, 0.5f);
centerPoint.move(-delta.height(), delta.width());
float theta1 = FloatPoint(point1 - centerPoint).slopeAngleRadians();
float theta2 = FloatPoint(point2 - centerPoint).slopeAngleRadians();
float thetaArc = theta2 - theta1;
if (thetaArc < 0 && arcSegment.arcSweep)
thetaArc += twoPiFloat;
else if (thetaArc > 0 && !arcSegment.arcSweep)
thetaArc -= twoPiFloat;
pointTransform.makeIdentity();
pointTransform.rotate(angle);
pointTransform.scale(rx, ry);
// Some results of atan2 on some platform implementations are not exact
// enough. So that we get more cubic curves than expected here. Adding 0.001f
// reduces the count of sgements to the correct count.
int segments = ceilf(fabsf(thetaArc / (piOverTwoFloat + 0.001f)));
for (int i = 0; i < segments; ++i) {
float startTheta = theta1 + i * thetaArc / segments;
float endTheta = theta1 + (i + 1) * thetaArc / segments;
float t = (8 / 6.f) * tanf(0.25f * (endTheta - startTheta));
if (!std::isfinite(t))
return false;
float sinStartTheta = sinf(startTheta);
float cosStartTheta = cosf(startTheta);
float sinEndTheta = sinf(endTheta);
float cosEndTheta = cosf(endTheta);
point1 = FloatPoint(cosStartTheta - t * sinStartTheta,
sinStartTheta + t * cosStartTheta);
point1.move(centerPoint.x(), centerPoint.y());
FloatPoint targetPoint = FloatPoint(cosEndTheta, sinEndTheta);
targetPoint.move(centerPoint.x(), centerPoint.y());
point2 = targetPoint;
point2.move(t * sinEndTheta, -t * cosEndTheta);
PathSegmentData cubicSegment;
//.........这里部分代码省略.........