本文整理汇总了C++中AffineTransform::isInvertible方法的典型用法代码示例。如果您正苦于以下问题:C++ AffineTransform::isInvertible方法的具体用法?C++ AffineTransform::isInvertible怎么用?C++ AffineTransform::isInvertible使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AffineTransform
的用法示例。
在下文中一共展示了AffineTransform::isInvertible方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: transformToUserSpaceAndCheckClipping
bool SVGLayoutSupport::transformToUserSpaceAndCheckClipping(LayoutObject* object, const AffineTransform& localTransform, const FloatPoint& pointInParent, FloatPoint& localPoint)
{
if (!localTransform.isInvertible())
return false;
localPoint = localTransform.inverse().mapPoint(pointInParent);
return pointInClippingArea(object, localPoint);
}
示例2: nodeAtFloatPoint
bool LayoutSVGForeignObject::nodeAtFloatPoint(HitTestResult& result,
const FloatPoint& pointInParent,
HitTestAction hitTestAction) {
// Embedded content is drawn in the foreground phase.
if (hitTestAction != HitTestForeground)
return false;
AffineTransform localTransform = this->localSVGTransform();
if (!localTransform.isInvertible())
return false;
FloatPoint localPoint = localTransform.inverse().mapPoint(pointInParent);
// Early exit if local point is not contained in clipped viewport area
if (SVGLayoutSupport::isOverflowHidden(this) &&
!m_viewport.contains(localPoint))
return false;
// FOs establish a stacking context, so we need to hit-test all layers.
HitTestLocation hitTestLocation(localPoint);
return LayoutBlock::nodeAtPoint(result, hitTestLocation, LayoutPoint(),
HitTestForeground) ||
LayoutBlock::nodeAtPoint(result, hitTestLocation, LayoutPoint(),
HitTestFloat) ||
LayoutBlock::nodeAtPoint(result, hitTestLocation, LayoutPoint(),
HitTestChildBlockBackgrounds);
}
示例3: paintContents
void OpaqueRectTrackingContentLayerDelegate::paintContents(SkCanvas* canvas, const WebRect& clip, bool canPaintLCDText, WebFloatRect& opaque)
{
static const unsigned char* annotationsEnabled = 0;
if (UNLIKELY(!annotationsEnabled))
annotationsEnabled = EventTracer::getTraceCategoryEnabledFlag(TRACE_DISABLED_BY_DEFAULT("blink.graphics_context_annotations"));
GraphicsContext context(canvas);
context.setTrackOpaqueRegion(!m_opaque);
context.setCertainlyOpaque(m_opaque);
context.setShouldSmoothFonts(canPaintLCDText);
if (*annotationsEnabled)
context.setAnnotationMode(AnnotateAll);
// Record transform prior to painting, as all opaque tracking will be
// relative to this current value.
AffineTransform canvasToContentTransform = context.getCTM().inverse();
m_painter->paint(context, clip);
// Transform tracked opaque paints back to our layer's content space.
ASSERT(canvasToContentTransform.isInvertible());
ASSERT(canvasToContentTransform.preservesAxisAlignment());
opaque = canvasToContentTransform.mapRect(context.opaqueRegion().asRect());
}
示例4: hitTestClipContent
bool LayoutSVGResourceClipper::hitTestClipContent(const FloatRect& objectBoundingBox, const FloatPoint& nodeAtPoint)
{
FloatPoint point = nodeAtPoint;
if (!SVGLayoutSupport::pointInClippingArea(this, point))
return false;
if (clipPathUnits() == SVGUnitTypes::SVG_UNIT_TYPE_OBJECTBOUNDINGBOX) {
AffineTransform transform;
transform.translate(objectBoundingBox.x(), objectBoundingBox.y());
transform.scaleNonUniform(objectBoundingBox.width(), objectBoundingBox.height());
point = transform.inverse().mapPoint(point);
}
AffineTransform animatedLocalTransform = toSVGClipPathElement(element())->calculateAnimatedLocalTransform();
if (!animatedLocalTransform.isInvertible())
return false;
point = animatedLocalTransform.inverse().mapPoint(point);
for (SVGElement* childElement = Traversal<SVGElement>::firstChild(*element()); childElement; childElement = Traversal<SVGElement>::nextSibling(*childElement)) {
LayoutObject* layoutObject = childElement->layoutObject();
if (!layoutObject)
continue;
if (!layoutObject->isSVGShape() && !layoutObject->isSVGText() && !isSVGUseElement(*childElement))
continue;
IntPoint hitPoint;
HitTestResult result(HitTestRequest::SVGClipContent, hitPoint);
if (layoutObject->nodeAtFloatPoint(result, point, HitTestForeground))
return true;
}
return false;
}
示例5: addEllipse
void Path::addEllipse(const FloatPoint& p,
float radiusX,
float radiusY,
float rotation,
float startAngle,
float endAngle,
bool anticlockwise) {
ASSERT(ellipseIsRenderable(startAngle, endAngle));
ASSERT(startAngle >= 0 && startAngle < twoPiFloat);
ASSERT((anticlockwise && (startAngle - endAngle) >= 0) ||
(!anticlockwise && (endAngle - startAngle) >= 0));
if (!rotation) {
addEllipse(FloatPoint(p.x(), p.y()), radiusX, radiusY, startAngle, endAngle,
anticlockwise);
return;
}
// Add an arc after the relevant transform.
AffineTransform ellipseTransform =
AffineTransform::translation(p.x(), p.y()).rotateRadians(rotation);
ASSERT(ellipseTransform.isInvertible());
AffineTransform inverseEllipseTransform = ellipseTransform.inverse();
transform(inverseEllipseTransform);
addEllipse(FloatPoint::zero(), radiusX, radiusY, startAngle, endAngle,
anticlockwise);
transform(ellipseTransform);
}
示例6: drawDeferredFilter
static void drawDeferredFilter(GraphicsContext* context, FilterData* filterData, SVGFilterElement* filterElement)
{
SkiaImageFilterBuilder builder(context);
SourceGraphic* sourceGraphic = static_cast<SourceGraphic*>(filterData->builder->getEffectById(SourceGraphic::effectName()));
ASSERT(sourceGraphic);
builder.setSourceGraphic(sourceGraphic);
RefPtr<ImageFilter> imageFilter = builder.build(filterData->builder->lastEffect(), ColorSpaceDeviceRGB);
FloatRect boundaries = filterData->boundaries;
context->save();
FloatSize deviceSize = context->getCTM().mapSize(boundaries.size());
float scaledArea = deviceSize.width() * deviceSize.height();
// If area of scaled size is bigger than the upper limit, adjust the scale
// to fit. Note that this only really matters in the non-impl-side painting
// case, since the impl-side case never allocates a full-sized backing
// store, only tile-sized.
// FIXME: remove this once all platforms are using impl-side painting.
// crbug.com/169282.
if (scaledArea > FilterEffect::maxFilterArea()) {
float scale = sqrtf(FilterEffect::maxFilterArea() / scaledArea);
context->scale(scale, scale);
}
// Clip drawing of filtered image to the minimum required paint rect.
FilterEffect* lastEffect = filterData->builder->lastEffect();
context->clipRect(lastEffect->determineAbsolutePaintRect(lastEffect->maxEffectRect()));
if (filterElement->hasAttribute(SVGNames::filterResAttr)) {
// Get boundaries in device coords.
// FIXME: See crbug.com/382491. Is the use of getCTM OK here, given it does not include device
// zoom or High DPI adjustments?
FloatSize size = context->getCTM().mapSize(boundaries.size());
// Compute the scale amount required so that the resulting offscreen is exactly filterResX by filterResY pixels.
float filterResScaleX = filterElement->filterResX()->currentValue()->value() / size.width();
float filterResScaleY = filterElement->filterResY()->currentValue()->value() / size.height();
// Scale the CTM so the primitive is drawn to filterRes.
context->scale(filterResScaleX, filterResScaleY);
// Create a resize filter with the inverse scale.
AffineTransform resizeMatrix;
resizeMatrix.scale(1 / filterResScaleX, 1 / filterResScaleY);
imageFilter = builder.buildTransform(resizeMatrix, imageFilter.get());
}
// If the CTM contains rotation or shearing, apply the filter to
// the unsheared/unrotated matrix, and do the shearing/rotation
// as a final pass.
AffineTransform ctm = context->getCTM();
if (ctm.b() || ctm.c()) {
AffineTransform scaleAndTranslate;
scaleAndTranslate.translate(ctm.e(), ctm.f());
scaleAndTranslate.scale(ctm.xScale(), ctm.yScale());
ASSERT(scaleAndTranslate.isInvertible());
AffineTransform shearAndRotate = scaleAndTranslate.inverse();
shearAndRotate.multiply(ctm);
context->setCTM(scaleAndTranslate);
imageFilter = builder.buildTransform(shearAndRotate, imageFilter.get());
}
context->beginLayer(1, CompositeSourceOver, &boundaries, ColorFilterNone, imageFilter.get());
context->endLayer();
context->restore();
}
示例7: setupNonScalingStrokeContext
static bool setupNonScalingStrokeContext(AffineTransform& strokeTransform, GraphicsContextStateSaver& stateSaver)
{
if (!strokeTransform.isInvertible())
return false;
stateSaver.save();
stateSaver.context().concatCTM(strokeTransform.inverse());
return true;
}
示例8: point
bool CanvasRenderingContext2D::isPointInPath(const float x, const float y)
{
GraphicsContext* c = drawingContext();
if (!c)
return false;
FloatPoint point(x, y);
// We have to invert the current transform to ensure we correctly handle the
// transforms applied to the current path.
AffineTransform ctm = state().m_transform;
if (!ctm.isInvertible())
return false;
FloatPoint transformedPoint = ctm.inverse().mapPoint(point);
return m_path.contains(transformedPoint);
}
示例9: paintFilteredContent
static void paintFilteredContent(const LayoutObject& object, GraphicsContext& context, FilterData* filterData)
{
ASSERT(filterData->m_state == FilterData::ReadyToPaint);
ASSERT(filterData->filter->sourceGraphic());
filterData->m_state = FilterData::PaintingFilter;
SkiaImageFilterBuilder builder;
RefPtr<SkImageFilter> imageFilter = builder.build(filterData->filter->lastEffect(), ColorSpaceDeviceRGB);
FloatRect boundaries = filterData->filter->filterRegion();
context.save();
// Clip drawing of filtered image to the minimum required paint rect.
FilterEffect* lastEffect = filterData->filter->lastEffect();
context.clipRect(lastEffect->determineAbsolutePaintRect(lastEffect->maxEffectRect()));
#ifdef CHECK_CTM_FOR_TRANSFORMED_IMAGEFILTER
// TODO: Remove this workaround once skew/rotation support is added in Skia
// (https://code.google.com/p/skia/issues/detail?id=3288, crbug.com/446935).
// If the CTM contains rotation or shearing, apply the filter to
// the unsheared/unrotated matrix, and do the shearing/rotation
// as a final pass.
AffineTransform ctm = SVGLayoutSupport::deprecatedCalculateTransformToLayer(&object);
if (ctm.b() || ctm.c()) {
AffineTransform scaleAndTranslate;
scaleAndTranslate.translate(ctm.e(), ctm.f());
scaleAndTranslate.scale(ctm.xScale(), ctm.yScale());
ASSERT(scaleAndTranslate.isInvertible());
AffineTransform shearAndRotate = scaleAndTranslate.inverse();
shearAndRotate.multiply(ctm);
context.concatCTM(shearAndRotate.inverse());
imageFilter = builder.buildTransform(shearAndRotate, imageFilter.get());
}
#endif
context.beginLayer(1, SkXfermode::kSrcOver_Mode, &boundaries, ColorFilterNone, imageFilter.get());
context.endLayer();
context.restore();
filterData->m_state = FilterData::ReadyToPaint;
}
示例10: drawingContext
void CanvasRenderingContext2D::setTransform(float m11, float m12, float m21, float m22, float dx, float dy)
{
GraphicsContext* c = drawingContext();
if (!c)
return;
if (!isfinite(m11) | !isfinite(m21) | !isfinite(dx) |
!isfinite(m12) | !isfinite(m22) | !isfinite(dy))
return;
AffineTransform ctm = state().m_transform;
if (!ctm.isInvertible())
return;
c->concatCTM(c->getCTM().inverse());
c->concatCTM(canvas()->baseTransform());
state().m_transform.multiply(ctm.inverse());
m_path.transform(ctm);
state().m_invertibleCTM = true;
transform(m11, m12, m21, m22, dx, dy);
}
示例11: calculateStrokeBoundingBox
FloatRect LayoutSVGShape::calculateStrokeBoundingBox() const
{
ASSERT(m_path);
FloatRect strokeBoundingBox = m_fillBoundingBox;
if (style()->svgStyle().hasStroke()) {
StrokeData strokeData;
SVGLayoutSupport::applyStrokeStyleToStrokeData(strokeData, styleRef(), *this);
if (hasNonScalingStroke()) {
AffineTransform nonScalingTransform = nonScalingStrokeTransform();
if (nonScalingTransform.isInvertible()) {
Path* usePath = nonScalingStrokePath(m_path.get(), nonScalingTransform);
FloatRect strokeBoundingRect = usePath->strokeBoundingRect(strokeData);
strokeBoundingRect = nonScalingTransform.inverse().mapRect(strokeBoundingRect);
strokeBoundingBox.unite(strokeBoundingRect);
}
} else {
strokeBoundingBox.unite(path().strokeBoundingRect(strokeData));
}
}
return strokeBoundingBox;
}
示例12: transform
void CanvasRenderingContext2D::transform(float m11, float m12, float m21, float m22, float dx, float dy)
{
GraphicsContext* c = drawingContext();
if (!c)
return;
if (!state().m_invertibleCTM)
return;
if (!isfinite(m11) | !isfinite(m21) | !isfinite(dx) |
!isfinite(m12) | !isfinite(m22) | !isfinite(dy))
return;
AffineTransform transform(m11, m12, m21, m22, dx, dy);
AffineTransform newTransform = transform * state().m_transform;
if (!newTransform.isInvertible()) {
state().m_invertibleCTM = false;
return;
}
state().m_transform = newTransform;
c->concatCTM(transform);
m_path.transform(transform.inverse());
}
示例13: drawPattern
void Image::drawPattern(GraphicsContext* ctxt, const FloatRect& tileRect, const AffineTransform& patternTransform,
const FloatPoint& phase, ColorSpace styleColorSpace, CompositeOperator op, const FloatRect& destRect, BlendMode blendMode)
{
if (!nativeImageForCurrentFrame())
return;
if (!patternTransform.isInvertible())
return;
CGContextRef context = ctxt->platformContext();
GraphicsContextStateSaver stateSaver(*ctxt);
CGContextClipToRect(context, destRect);
ctxt->setCompositeOperation(op, blendMode);
CGContextTranslateCTM(context, destRect.x(), destRect.y() + destRect.height());
CGContextScaleCTM(context, 1, -1);
// Compute the scaled tile size.
float scaledTileHeight = tileRect.height() * narrowPrecisionToFloat(patternTransform.d());
// We have to adjust the phase to deal with the fact we're in Cartesian space now (with the bottom left corner of destRect being
// the origin).
float adjustedX = phase.x() - destRect.x() + tileRect.x() * narrowPrecisionToFloat(patternTransform.a()); // We translated the context so that destRect.x() is the origin, so subtract it out.
float adjustedY = destRect.height() - (phase.y() - destRect.y() + tileRect.y() * narrowPrecisionToFloat(patternTransform.d()) + scaledTileHeight);
CGImageRef tileImage = nativeImageForCurrentFrame();
float h = CGImageGetHeight(tileImage);
RetainPtr<CGImageRef> subImage;
if (tileRect.size() == size())
subImage = tileImage;
else {
// Copying a sub-image out of a partially-decoded image stops the decoding of the original image. It should never happen
// because sub-images are only used for border-image, which only renders when the image is fully decoded.
ASSERT(h == height());
subImage = adoptCF(CGImageCreateWithImageInRect(tileImage, tileRect));
}
// Adjust the color space.
subImage = Image::imageWithColorSpace(subImage.get(), styleColorSpace);
// Leopard has an optimized call for the tiling of image patterns, but we can only use it if the image has been decoded enough that
// its buffer is the same size as the overall image. Because a partially decoded CGImageRef with a smaller width or height than the
// overall image buffer needs to tile with "gaps", we can't use the optimized tiling call in that case.
// FIXME: We cannot use CGContextDrawTiledImage with scaled tiles on Leopard, because it suffers from rounding errors. Snow Leopard is ok.
float scaledTileWidth = tileRect.width() * narrowPrecisionToFloat(patternTransform.a());
float w = CGImageGetWidth(tileImage);
if (w == size().width() && h == size().height() && !spaceSize().width() && !spaceSize().height())
CGContextDrawTiledImage(context, FloatRect(adjustedX, adjustedY, scaledTileWidth, scaledTileHeight), subImage.get());
else {
// On Leopard and newer, this code now only runs for partially decoded images whose buffers do not yet match the overall size of the image.
static const CGPatternCallbacks patternCallbacks = { 0, drawPatternCallback, patternReleaseCallback };
CGAffineTransform matrix = CGAffineTransformMake(narrowPrecisionToCGFloat(patternTransform.a()), 0, 0, narrowPrecisionToCGFloat(patternTransform.d()), adjustedX, adjustedY);
matrix = CGAffineTransformConcat(matrix, CGContextGetCTM(context));
// The top of a partially-decoded image is drawn at the bottom of the tile. Map it to the top.
matrix = CGAffineTransformTranslate(matrix, 0, size().height() - h);
#if PLATFORM(IOS)
matrix = CGAffineTransformScale(matrix, 1, -1);
matrix = CGAffineTransformTranslate(matrix, 0, -h);
#endif
CGImageRef platformImage = CGImageRetain(subImage.get());
RetainPtr<CGPatternRef> pattern = adoptCF(CGPatternCreate(platformImage, CGRectMake(0, 0, tileRect.width(), tileRect.height()), matrix,
tileRect.width() + spaceSize().width() * (1 / narrowPrecisionToFloat(patternTransform.a())),
tileRect.height() + spaceSize().height() * (1 / narrowPrecisionToFloat(patternTransform.d())),
kCGPatternTilingConstantSpacing, true, &patternCallbacks));
if (!pattern)
return;
RetainPtr<CGColorSpaceRef> patternSpace = adoptCF(CGColorSpaceCreatePattern(0));
CGFloat alpha = 1;
RetainPtr<CGColorRef> color = adoptCF(CGColorCreateWithPattern(patternSpace.get(), pattern.get(), &alpha));
CGContextSetFillColorSpace(context, patternSpace.get());
// FIXME: Really want a public API for this. It is just CGContextSetBaseCTM(context, CGAffineTransformIdentiy).
wkSetBaseCTM(context, CGAffineTransformIdentity);
CGContextSetPatternPhase(context, CGSizeZero);
CGContextSetFillColorWithColor(context, color.get());
CGContextFillRect(context, CGContextGetClipBoundingBox(context));
}
stateSaver.restore();
if (imageObserver())
imageObserver()->didDraw(this);
}
示例14:
void CanvasRenderingContext2DState::setTransform(const AffineTransform& transform)
{
m_isTransformInvertible = transform.isInvertible();
m_transform = transform;
}
示例15: applyResource
bool RenderSVGResourceFilter::applyResource(RenderElement& renderer, const RenderStyle&, GraphicsContext*& context, unsigned short resourceMode)
{
ASSERT(context);
ASSERT_UNUSED(resourceMode, resourceMode == ApplyToDefaultMode);
if (m_filter.contains(&renderer)) {
FilterData* filterData = m_filter.get(&renderer);
if (filterData->state == FilterData::PaintingSource || filterData->state == FilterData::Applying)
filterData->state = FilterData::CycleDetected;
return false; // Already built, or we're in a cycle, or we're marked for removal. Regardless, just do nothing more now.
}
auto filterData = std::make_unique<FilterData>();
FloatRect targetBoundingBox = renderer.objectBoundingBox();
filterData->boundaries = SVGLengthContext::resolveRectangle<SVGFilterElement>(&filterElement(), filterElement().filterUnits(), targetBoundingBox);
if (filterData->boundaries.isEmpty())
return false;
// Determine absolute transformation matrix for filter.
AffineTransform absoluteTransform;
SVGRenderingContext::calculateTransformationToOutermostCoordinateSystem(renderer, absoluteTransform);
if (!absoluteTransform.isInvertible())
return false;
// Eliminate shear of the absolute transformation matrix, to be able to produce unsheared tile images for feTile.
filterData->shearFreeAbsoluteTransform = AffineTransform(absoluteTransform.xScale(), 0, 0, absoluteTransform.yScale(), 0, 0);
// Determine absolute boundaries of the filter and the drawing region.
FloatRect absoluteFilterBoundaries = filterData->shearFreeAbsoluteTransform.mapRect(filterData->boundaries);
filterData->drawingRegion = renderer.strokeBoundingBox();
filterData->drawingRegion.intersect(filterData->boundaries);
FloatRect absoluteDrawingRegion = filterData->shearFreeAbsoluteTransform.mapRect(filterData->drawingRegion);
// Create the SVGFilter object.
bool primitiveBoundingBoxMode = filterElement().primitiveUnits() == SVGUnitTypes::SVG_UNIT_TYPE_OBJECTBOUNDINGBOX;
filterData->filter = SVGFilter::create(filterData->shearFreeAbsoluteTransform, absoluteDrawingRegion, targetBoundingBox, filterData->boundaries, primitiveBoundingBoxMode);
// Create all relevant filter primitives.
filterData->builder = buildPrimitives(filterData->filter.get());
if (!filterData->builder)
return false;
// Calculate the scale factor for the use of filterRes.
// Also see http://www.w3.org/TR/SVG/filters.html#FilterEffectsRegion
FloatSize scale(1, 1);
if (filterElement().hasAttribute(SVGNames::filterResAttr)) {
scale.setWidth(filterElement().filterResX() / absoluteFilterBoundaries.width());
scale.setHeight(filterElement().filterResY() / absoluteFilterBoundaries.height());
}
if (scale.isEmpty())
return false;
// Determine scale factor for filter. The size of intermediate ImageBuffers shouldn't be bigger than kMaxFilterSize.
FloatRect tempSourceRect = absoluteDrawingRegion;
tempSourceRect.scale(scale.width(), scale.height());
fitsInMaximumImageSize(tempSourceRect.size(), scale);
// Set the scale level in SVGFilter.
filterData->filter->setFilterResolution(scale);
static const unsigned maxTotalOfEffectInputs = 100;
FilterEffect* lastEffect = filterData->builder->lastEffect();
if (!lastEffect || lastEffect->totalNumberOfEffectInputs() > maxTotalOfEffectInputs)
return false;
RenderSVGResourceFilterPrimitive::determineFilterPrimitiveSubregion(*lastEffect);
FloatRect subRegion = lastEffect->maxEffectRect();
// At least one FilterEffect has a too big image size,
// recalculate the effect sizes with new scale factors.
if (!fitsInMaximumImageSize(subRegion.size(), scale)) {
filterData->filter->setFilterResolution(scale);
RenderSVGResourceFilterPrimitive::determineFilterPrimitiveSubregion(*lastEffect);
}
// If the drawingRegion is empty, we have something like <g filter=".."/>.
// Even if the target objectBoundingBox() is empty, we still have to draw the last effect result image in postApplyResource.
if (filterData->drawingRegion.isEmpty()) {
ASSERT(!m_filter.contains(&renderer));
filterData->savedContext = context;
m_filter.set(&renderer, WTF::move(filterData));
return false;
}
// Change the coordinate transformation applied to the filtered element to reflect the resolution of the filter.
AffineTransform effectiveTransform;
effectiveTransform.scale(scale.width(), scale.height());
effectiveTransform.multiply(filterData->shearFreeAbsoluteTransform);
std::unique_ptr<ImageBuffer> sourceGraphic;
RenderingMode renderingMode = renderer.frame().settings().acceleratedFiltersEnabled() ? Accelerated : Unaccelerated;
if (!SVGRenderingContext::createImageBuffer(filterData->drawingRegion, effectiveTransform, sourceGraphic, ColorSpaceLinearRGB, renderingMode)) {
ASSERT(!m_filter.contains(&renderer));
filterData->savedContext = context;
m_filter.set(&renderer, WTF::move(filterData));
return false;
}
// Set the rendering mode from the page's settings.
//.........这里部分代码省略.........