計算泊鬆分布的損失函數。
用法
poisson_log_loss(data, ...)
# S3 method for data.frame
poisson_log_loss(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
poisson_log_loss_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
參數
- data
-
data.frame
包含由truth
和estimate
參數指定的列。 - ...
-
目前未使用。
- truth
-
真實計數的列標識符(即
integer
)。這應該是一個不帶引號的列名,盡管此參數是通過表達式傳遞的並且支持quasiquotation(您可以不帶引號的列名)。對於_vec()
函數,一個integer
向量。 - estimate
-
預測結果的列標識符(也是
numeric
)。與truth
一樣,可以通過不同的方式指定,但主要方法是使用不帶引號的變量名稱。對於_vec()
函數,一個numeric
向量。 - na_rm
-
logical
值,指示在計算繼續之前是否應剝離NA
值。 - case_weights
-
案例權重的可選列標識符。這應該是一個不帶引號的列名稱,其計算結果為
data
中的數字列。對於_vec()
函數,一個數值向量。
值
tibble
包含列 .metric
、 .estimator
和 .estimate
以及 1 行值。
對於分組 DataFrame ,返回的行數將與組數相同。
對於 poisson_log_loss_vec()
,單個 numeric
值(或 NA
)。
例子
count_truth <- c(2L, 7L, 1L, 1L, 0L, 3L)
count_pred <- c(2.14, 5.35, 1.65, 1.56, 1.3, 2.71)
count_results <- dplyr::tibble(count = count_truth, pred = count_pred)
# Supply truth and predictions as bare column names
poisson_log_loss(count_results, count, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 poisson_log_loss standard 1.42
相關用法
- R yardstick pr_auc 查準率曲線下麵積
- R yardstick pr_curve 精確率召回曲線
- R yardstick ppv 陽性預測值
- R yardstick precision 精確
- R yardstick accuracy 準確性
- R yardstick gain_capture 增益捕獲
- R yardstick conf_mat 分類數據的混淆矩陣
- R yardstick mn_log_loss 多項數據的平均對數損失
- R yardstick rpd 性能與偏差之比
- R yardstick mae 平均絕對誤差
- R yardstick detection_prevalence 檢測率
- R yardstick bal_accuracy 平衡的精度
- R yardstick rpiq 績效與四分位間的比率
- R yardstick roc_aunp 使用先驗類別分布,每個類別相對於其他類別的 ROC 曲線下麵積
- R yardstick roc_curve 接收者算子曲線
- R yardstick rsq R 平方
- R yardstick msd 平均符號偏差
- R yardstick mpe 平均百分比誤差
- R yardstick iic 相關性理想指數
- R yardstick recall 記起
- R yardstick roc_aunu 使用均勻類別分布,每個類別相對於其他類別的 ROC 曲線下麵積
- R yardstick npv 陰性預測值
- R yardstick rmse 均方根誤差
- R yardstick sens 靈敏度
- R yardstick rsq_trad R 平方 - 傳統
注:本文由純淨天空篩選整理自Max Kuhn等大神的英文原創作品 Mean log loss for Poisson data。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。