當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R yardstick poisson_log_loss 泊鬆數據的平均對數損失


計算泊鬆分布的損失函數。

用法

poisson_log_loss(data, ...)

# S3 method for data.frame
poisson_log_loss(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)

poisson_log_loss_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)

參數

data

data.frame 包含由 truthestimate 參數指定的列。

...

目前未使用。

truth

真實計數的列標識符(即 integer )。這應該是一個不帶引號的列名,盡管此參數是通過表達式傳遞的並且支持quasiquotation(您可以不帶引號的列名)。對於 _vec() 函數,一個 integer 向量。

estimate

預測結果的列標識符(也是 numeric )。與 truth 一樣,可以通過不同的方式指定,但主要方法是使用不帶引號的變量名稱。對於 _vec() 函數,一個 numeric 向量。

na_rm

logical 值,指示在計算繼續之前是否應剝離 NA 值。

case_weights

案例權重的可選列標識符。這應該是一個不帶引號的列名稱,其計算結果為 data 中的數字列。對於 _vec() 函數,一個數值向量。

tibble 包含列 .metric.estimator.estimate 以及 1 行值。

對於分組 DataFrame ,返回的行數將與組數相同。

對於 poisson_log_loss_vec() ,單個 numeric 值(或 NA )。

也可以看看

其他數字指標:ccc() , huber_loss_pseudo() , huber_loss() , iic() , mae() , mape() , mase() , mpe() , msd() , rmse() , rpd() , rpiq() , rsq_trad() , rsq() , smape()

其他準確度指標:ccc() , huber_loss_pseudo() , huber_loss() , iic() , mae() , mape() , mase() , mpe() , msd() , rmse() , smape()

作者

馬克斯·庫恩

例子

count_truth <- c(2L,   7L,   1L,   1L,   0L,  3L)
count_pred  <- c(2.14, 5.35, 1.65, 1.56, 1.3, 2.71)
count_results <- dplyr::tibble(count = count_truth, pred = count_pred)

# Supply truth and predictions as bare column names
poisson_log_loss(count_results, count, pred)
#> # A tibble: 1 × 3
#>   .metric          .estimator .estimate
#>   <chr>            <chr>          <dbl>
#> 1 poisson_log_loss standard        1.42

相關用法


注:本文由純淨天空篩選整理自Max Kuhn等大神的英文原創作品 Mean log loss for Poisson data。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。