计算泊松分布的损失函数。
用法
poisson_log_loss(data, ...)
# S3 method for data.frame
poisson_log_loss(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
poisson_log_loss_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
参数
- data
-
data.frame
包含由truth
和estimate
参数指定的列。 - ...
-
目前未使用。
- truth
-
真实计数的列标识符(即
integer
)。这应该是一个不带引号的列名,尽管此参数是通过表达式传递的并且支持quasiquotation(您可以不带引号的列名)。对于_vec()
函数,一个integer
向量。 - estimate
-
预测结果的列标识符(也是
numeric
)。与truth
一样,可以通过不同的方式指定,但主要方法是使用不带引号的变量名称。对于_vec()
函数,一个numeric
向量。 - na_rm
-
logical
值,指示在计算继续之前是否应剥离NA
值。 - case_weights
-
案例权重的可选列标识符。这应该是一个不带引号的列名称,其计算结果为
data
中的数字列。对于_vec()
函数,一个数值向量。
值
tibble
包含列 .metric
、 .estimator
和 .estimate
以及 1 行值。
对于分组 DataFrame ,返回的行数将与组数相同。
对于 poisson_log_loss_vec()
,单个 numeric
值(或 NA
)。
例子
count_truth <- c(2L, 7L, 1L, 1L, 0L, 3L)
count_pred <- c(2.14, 5.35, 1.65, 1.56, 1.3, 2.71)
count_results <- dplyr::tibble(count = count_truth, pred = count_pred)
# Supply truth and predictions as bare column names
poisson_log_loss(count_results, count, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 poisson_log_loss standard 1.42
相关用法
- R yardstick pr_auc 查准率曲线下面积
- R yardstick pr_curve 精确率召回曲线
- R yardstick ppv 阳性预测值
- R yardstick precision 精确
- R yardstick accuracy 准确性
- R yardstick gain_capture 增益捕获
- R yardstick conf_mat 分类数据的混淆矩阵
- R yardstick mn_log_loss 多项数据的平均对数损失
- R yardstick rpd 性能与偏差之比
- R yardstick mae 平均绝对误差
- R yardstick detection_prevalence 检测率
- R yardstick bal_accuracy 平衡的精度
- R yardstick rpiq 绩效与四分位间的比率
- R yardstick roc_aunp 使用先验类别分布,每个类别相对于其他类别的 ROC 曲线下面积
- R yardstick roc_curve 接收者算子曲线
- R yardstick rsq R 平方
- R yardstick msd 平均符号偏差
- R yardstick mpe 平均百分比误差
- R yardstick iic 相关性理想指数
- R yardstick recall 记起
- R yardstick roc_aunu 使用均匀类别分布,每个类别相对于其他类别的 ROC 曲线下面积
- R yardstick npv 阴性预测值
- R yardstick rmse 均方根误差
- R yardstick sens 灵敏度
- R yardstick rsq_trad R 平方 - 传统
注:本文由纯净天空筛选整理自Max Kuhn等大神的英文原创作品 Mean log loss for Poisson data。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。