當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


R broom glance.ivreg 瀏覽 a(n) ivreg 對象

Glance 接受模型對象並返回 tibble::tibble(),其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。

Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。

Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA

無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA 進行填充。

用法

# S3 method for ivreg
glance(x, diagnostics = FALSE, ...)

參數

x

通過調用 AER::ivreg() 創建的 ivreg 對象。

diagnostics

邏輯指示是否返回Wu-Hausman和Sargan診斷信息。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

細節

此整理器當前僅支持 AER 包輸出的 ivreg 類對象。 ivreg 包還輸出類 ivreg 的對象,並將在以後的版本中得到支持。

注意

從 0.7.0 開始,glance.ivreg 返回 Wu-Hausman 內生性測試和過度識別限製的 Sargan 測試的統計數據。如果儀器數量不大於內生回歸變量的數量,則 Sargan 測試值將返回為 NA

也可以看看

glance() , AER::ivreg()

其他 ivreg 整理器:augment.ivreg()tidy.ivreg()

恰好隻有一行和一列的 tibble::tibble()

adj.r.squared

調整後的 R 平方統計量,除了考慮自由度之外,與 R 平方統計量類似。

df

模型使用的自由度。

df.residual

剩餘自由度。

nobs

使用的觀察數。

r.squared

R 平方統計量,或模型解釋的變異百分比。也稱為決定係數。

sigma

殘差的估計標準誤差。

statistic

Wald 檢驗統計量。

p.value

Wald 檢驗的 P 值。

例子


# load libraries for models and data
library(AER)

# load data
data("CigarettesSW", package = "AER")

# fit model
ivr <- ivreg(
  log(packs) ~ income | population,
  data = CigarettesSW,
  subset = year == "1995"
)

# summarize model fit with tidiers
tidy(ivr)
#> # A tibble: 2 × 5
#>   term         estimate std.error statistic  p.value
#>   <chr>           <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  4.61e+ 0  4.45e- 2    104.   3.74e-56
#> 2 income      -5.71e-10  2.33e-10     -2.44 1.84e- 2
tidy(ivr, conf.int = TRUE)
#> # A tibble: 2 × 7
#>   term         estimate std.error statistic  p.value conf.low conf.high
#>   <chr>           <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)  4.61e+ 0  4.45e- 2    104.   3.74e-56  4.52e+0  4.70e+ 0
#> 2 income      -5.71e-10  2.33e-10     -2.44 1.84e- 2 -1.03e-9 -1.13e-10
tidy(ivr, conf.int = TRUE, instruments = TRUE)
#> # A tibble: 1 × 5
#>   term   num.df den.df statistic  p.value
#>   <chr>   <dbl>  <dbl>     <dbl>    <dbl>
#> 1 income      1     46     3329. 1.46e-44

augment(ivr)
#> # A tibble: 48 × 6
#>    .rownames `log(packs)`    income population .fitted  .resid
#>    <chr>            <dbl>     <dbl>      <dbl>   <dbl>   <dbl>
#>  1 49                4.62  83903280    4262731    4.56  0.0522
#>  2 50                4.71  45995496    2480121    4.59  0.124 
#>  3 51                4.28  88870496    4306908    4.56 -0.285 
#>  4 52                4.04 771470144   31493524    4.17 -0.131 
#>  5 53                4.41  92946544    3738061    4.56 -0.145 
#>  6 54                4.38 104315120    3265293    4.55 -0.177 
#>  7 55                4.82  18237436     718265    4.60  0.223 
#>  8 56                4.53 333525344   14185403    4.42  0.112 
#>  9 57                4.58 159800448    7188538    4.52  0.0591
#> 10 58                4.53  60170928    2840860    4.58 -0.0512
#> # ℹ 38 more rows
augment(ivr, data = CigarettesSW)
#> # A tibble: 96 × 11
#>    state year    cpi population packs    income   tax price  taxs .fitted
#>    <fct> <fct> <dbl>      <dbl> <dbl>     <dbl> <dbl> <dbl> <dbl>   <dbl>
#>  1 AL    1985   1.08    3973000  116.  46014968  32.5 102.   33.3    4.56
#>  2 AR    1985   1.08    2327000  129.  26210736  37   101.   37      4.59
#>  3 AZ    1985   1.08    3184000  105.  43956936  31   109.   36.2    4.56
#>  4 CA    1985   1.08   26444000  100. 447102816  26   108.   32.1    4.17
#>  5 CO    1985   1.08    3209000  113.  49466672  31    94.3  31      4.56
#>  6 CT    1985   1.08    3201000  109.  60063368  42   128.   51.5    4.55
#>  7 DE    1985   1.08     618000  144.   9927301  30   102.   30      4.60
#>  8 FL    1985   1.08   11352000  122. 166919248  37   115.   42.5    4.42
#>  9 GA    1985   1.08    5963000  127.  78364336  28    97.0  28.8    4.52
#> 10 IA    1985   1.08    2830000  114.  37902896  34   102.   37.9    4.58
#> # ℹ 86 more rows
#> # ℹ 1 more variable: .resid <dbl>
augment(ivr, newdata = CigarettesSW)
#> # A tibble: 96 × 10
#>    state year    cpi population packs    income   tax price  taxs .fitted
#>    <fct> <fct> <dbl>      <dbl> <dbl>     <dbl> <dbl> <dbl> <dbl>   <dbl>
#>  1 AL    1985   1.08    3973000  116.  46014968  32.5 102.   33.3    4.59
#>  2 AR    1985   1.08    2327000  129.  26210736  37   101.   37      4.60
#>  3 AZ    1985   1.08    3184000  105.  43956936  31   109.   36.2    4.59
#>  4 CA    1985   1.08   26444000  100. 447102816  26   108.   32.1    4.36
#>  5 CO    1985   1.08    3209000  113.  49466672  31    94.3  31      4.58
#>  6 CT    1985   1.08    3201000  109.  60063368  42   128.   51.5    4.58
#>  7 DE    1985   1.08     618000  144.   9927301  30   102.   30      4.61
#>  8 FL    1985   1.08   11352000  122. 166919248  37   115.   42.5    4.52
#>  9 GA    1985   1.08    5963000  127.  78364336  28    97.0  28.8    4.57
#> 10 IA    1985   1.08    2830000  114.  37902896  34   102.   37.9    4.59
#> # ℹ 86 more rows

glance(ivr)
#> # A tibble: 1 × 8
#>   r.squared adj.r.squared sigma statistic p.value    df df.residual  nobs
#>       <dbl>         <dbl> <dbl>     <dbl>   <dbl> <int>       <int> <int>
#> 1     0.131         0.112 0.229      5.98  0.0184     2          46    48
源代碼:R/aer-tidiers.R

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Glance at a(n) ivreg object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。