Glance 接受模型對象並返回 tibble::tibble()
,其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。
Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。
Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA
。
無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA
進行填充。
參數
- x
-
從
glmnet::glmnet()
返回的glmnet
對象。 - ...
-
附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到
...
中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞conf.lvel = 0.9
,所有計算將使用conf.level = 0.95
進行。這裏有兩個異常:
也可以看看
其他 glmnet 整理器:glance.cv.glmnet()
、tidy.cv.glmnet()
、tidy.glmnet()
例子
# load libraries for models and data
library(glmnet)
set.seed(2014)
x <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
fit1 <- glmnet(x, y)
# summarize model fit with tidiers + visualization
tidy(fit1)
#> # A tibble: 1,086 × 5
#> term step estimate lambda dev.ratio
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 1 -0.207 0.152 0
#> 2 (Intercept) 2 -0.208 0.139 0.00464
#> 3 (Intercept) 3 -0.209 0.127 0.0111
#> 4 (Intercept) 4 -0.210 0.115 0.0165
#> 5 (Intercept) 5 -0.210 0.105 0.0240
#> 6 (Intercept) 6 -0.210 0.0957 0.0321
#> 7 (Intercept) 7 -0.210 0.0872 0.0412
#> 8 (Intercept) 8 -0.210 0.0795 0.0497
#> 9 (Intercept) 9 -0.209 0.0724 0.0593
#> 10 (Intercept) 10 -0.208 0.0660 0.0682
#> # ℹ 1,076 more rows
glance(fit1)
#> # A tibble: 1 × 3
#> nulldev npasses nobs
#> <dbl> <int> <int>
#> 1 104. 255 100
library(dplyr)
library(ggplot2)
tidied <- tidy(fit1) %>% filter(term != "(Intercept)")
ggplot(tidied, aes(step, estimate, group = term)) +
geom_line()
ggplot(tidied, aes(lambda, estimate, group = term)) +
geom_line() +
scale_x_log10()
ggplot(tidied, aes(lambda, dev.ratio)) +
geom_line()
# works for other types of regressions as well, such as logistic
g2 <- sample(1:2, 100, replace = TRUE)
fit2 <- glmnet(x, g2, family = "binomial")
tidy(fit2)
#> # A tibble: 947 × 5
#> term step estimate lambda dev.ratio
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 1 0.282 0.0906 -1.62e-15
#> 2 (Intercept) 2 0.281 0.0826 6.28e- 3
#> 3 (Intercept) 3 0.279 0.0753 1.55e- 2
#> 4 (Intercept) 4 0.277 0.0686 2.48e- 2
#> 5 (Intercept) 5 0.284 0.0625 4.17e- 2
#> 6 (Intercept) 6 0.293 0.0569 5.79e- 2
#> 7 (Intercept) 7 0.303 0.0519 7.39e- 2
#> 8 (Intercept) 8 0.314 0.0473 8.94e- 2
#> 9 (Intercept) 9 0.325 0.0431 1.03e- 1
#> 10 (Intercept) 10 0.336 0.0392 1.14e- 1
#> # ℹ 937 more rows
相關用法
- R broom glance.glm 瀏覽 a(n) glm 對象
- R broom glance.glmRob 瀏覽 a(n) glmRob 對象
- R broom glance.geeglm 瀏覽 a(n) geeglm 對象
- R broom glance.gam 瀏覽一個(n)遊戲對象
- R broom glance.gmm 掃視 a(n) gmm 對象
- R broom glance.rlm 瀏覽 a(n) rlm 對象
- R broom glance.felm 瞥一眼毛氈物體
- R broom glance.plm 瀏覽一個 (n) plm 對象
- R broom glance.biglm 瀏覽 a(n) biglm 對象
- R broom glance.clm 瀏覽 a(n) clm 對象
- R broom glance.rma 瀏覽一個(n) rma 對象
- R broom glance.multinom 瀏覽一個(n)多項對象
- R broom glance.survexp 瀏覽 a(n) survexp 對象
- R broom glance.survreg 看一眼 survreg 對象
- R broom glance.rq 查看 a(n) rq 對象
- R broom glance.mjoint 查看 a(n) mjoint 對象
- R broom glance.fitdistr 瀏覽 a(n) fitdistr 對象
- R broom glance.coxph 瀏覽 a(n) coxph 對象
- R broom glance.margins 瀏覽 (n) 個 margins 對象
- R broom glance.poLCA 瀏覽一個(n) poLCA 對象
- R broom glance.aov 瞥一眼 lm 物體
- R broom glance.sarlm 瀏覽一個(n)spatialreg對象
- R broom glance.polr 瀏覽 a(n) polr 對象
- R broom glance.negbin 看一眼 negbin 對象
- R broom glance.mlogit 瀏覽一個(n) mlogit 對象
注:本文由純淨天空篩選整理自等大神的英文原創作品 Glance at a(n) glmnet object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。