當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


Python pandas.core.resample.Resampler.fillna用法及代碼示例

用法:

Resampler.fillna(method, limit=None)

填充上采樣引入的缺失值。

在統計學中,插補是用替換值 [1] 替換缺失數據的過程。重采樣數據時,可能會出現缺失值(例如,重采樣頻率高於原始頻率時)。

原始數據中存在的缺失值不會被修改。

參數

method{‘pad’, ‘backfill’, ‘ffill’, ‘bfill’, ‘nearest’}

用於填充重采樣數據中的空洞的方法

  • ‘pad’ or ‘ffill’:使用先前的有效觀察來填補空白(前向填充)。

  • ‘backfill’ or ‘bfill’:使用下一個有效觀察來填補空白。

  • ‘nearest’:使用最近的有效觀察來填補空白。

limitint 可選

要填充多少個連續缺失值的限製。

返回

係列或DataFrame

填充缺失值的上采樣係列或 DataFrame。

參考

pandas.core.resample.Resampler.fillna

https://en.wikipedia.org/wiki/Imputation_(statistics)

例子

重采樣係列:

>>> s = pd.Series([1, 2, 3],
...               index=pd.date_range('20180101', periods=3, freq='h'))
>>> s
2018-01-01 00:00:00    1
2018-01-01 01:00:00    2
2018-01-01 02:00:00    3
Freq: H, dtype: int64

在不填充缺失值的情況下,您會得到:

>>> s.resample("30min").asfreq()
2018-01-01 00:00:00    1.0
2018-01-01 00:30:00    NaN
2018-01-01 01:00:00    2.0
2018-01-01 01:30:00    NaN
2018-01-01 02:00:00    3.0
Freq: 30T, dtype: float64
>>> s.resample('30min').fillna("backfill")
2018-01-01 00:00:00    1
2018-01-01 00:30:00    2
2018-01-01 01:00:00    2
2018-01-01 01:30:00    3
2018-01-01 02:00:00    3
Freq: 30T, dtype: int64
>>> s.resample('15min').fillna("backfill", limit=2)
2018-01-01 00:00:00    1.0
2018-01-01 00:15:00    NaN
2018-01-01 00:30:00    2.0
2018-01-01 00:45:00    2.0
2018-01-01 01:00:00    2.0
2018-01-01 01:15:00    NaN
2018-01-01 01:30:00    3.0
2018-01-01 01:45:00    3.0
2018-01-01 02:00:00    3.0
Freq: 15T, dtype: float64
>>> s.resample('30min').fillna("pad")
2018-01-01 00:00:00    1
2018-01-01 00:30:00    1
2018-01-01 01:00:00    2
2018-01-01 01:30:00    2
2018-01-01 02:00:00    3
Freq: 30T, dtype: int64
>>> s.resample('30min').fillna("nearest")
2018-01-01 00:00:00    1
2018-01-01 00:30:00    2
2018-01-01 01:00:00    2
2018-01-01 01:30:00    3
2018-01-01 02:00:00    3
Freq: 30T, dtype: int64

上采樣之前存在的缺失值不受影響。

>>> sm = pd.Series([1, None, 3],
...               index=pd.date_range('20180101', periods=3, freq='h'))
>>> sm
2018-01-01 00:00:00    1.0
2018-01-01 01:00:00    NaN
2018-01-01 02:00:00    3.0
Freq: H, dtype: float64
>>> sm.resample('30min').fillna('backfill')
2018-01-01 00:00:00    1.0
2018-01-01 00:30:00    NaN
2018-01-01 01:00:00    NaN
2018-01-01 01:30:00    3.0
2018-01-01 02:00:00    3.0
Freq: 30T, dtype: float64
>>> sm.resample('30min').fillna('pad')
2018-01-01 00:00:00    1.0
2018-01-01 00:30:00    1.0
2018-01-01 01:00:00    NaN
2018-01-01 01:30:00    NaN
2018-01-01 02:00:00    3.0
Freq: 30T, dtype: float64
>>> sm.resample('30min').fillna('nearest')
2018-01-01 00:00:00    1.0
2018-01-01 00:30:00    NaN
2018-01-01 01:00:00    NaN
2018-01-01 01:30:00    3.0
2018-01-01 02:00:00    3.0
Freq: 30T, dtype: float64

DataFrame 重采樣是按列進行的。所有相同的選項都可用。

>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
...                   index=pd.date_range('20180101', periods=3,
...                                       freq='h'))
>>> df
                       a  b
2018-01-01 00:00:00  2.0  1
2018-01-01 01:00:00  NaN  3
2018-01-01 02:00:00  6.0  5
>>> df.resample('30min').fillna("bfill")
                       a  b
2018-01-01 00:00:00  2.0  1
2018-01-01 00:30:00  NaN  3
2018-01-01 01:00:00  NaN  3
2018-01-01 01:30:00  6.0  5
2018-01-01 02:00:00  6.0  5

相關用法


注:本文由純淨天空篩選整理自pandas.pydata.org大神的英文原創作品 pandas.core.resample.Resampler.fillna。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。