用法:
Eigen <: Factorization
方陣 A
的特征值/譜分解的矩陣分解類型。這是
的返回類型,對應的矩陣分解函數。eigen
如果 F::Eigen
是分解對象,則可以通過 F.values
和特征向量作為矩陣的列獲得特征值 F.vectors
。 (k
特征向量可以從切片 F.vectors[:, k]
中獲得。)
迭代分解產生組件 F.values
和 F.vectors
。
例子
julia> F = eigen([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
1.0
3.0
18.0
vectors:
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
julia> F.values
3-element Vector{Float64}:
1.0
3.0
18.0
julia> F.vectors
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
julia> vals, vecs = F; # destructuring via iteration
julia> vals == F.values && vecs == F.vectors
true
相關用法
- Julia LinearAlgebra.BLAS.dot用法及代碼示例
- Julia LinearAlgebra.bunchkaufman用法及代碼示例
- Julia LinearAlgebra.cholesky!用法及代碼示例
- Julia LinearAlgebra.istriu用法及代碼示例
- Julia LinearAlgebra.istril用法及代碼示例
- Julia LinearAlgebra.stride1用法及代碼示例
- Julia LinearAlgebra.svd用法及代碼示例
- Julia LinearAlgebra.logdet用法及代碼示例
- Julia LinearAlgebra.eigen用法及代碼示例
- Julia LinearAlgebra.BLAS.dotu用法及代碼示例
- Julia LinearAlgebra.ldlt!用法及代碼示例
- Julia LinearAlgebra.I用法及代碼示例
- Julia LinearAlgebra.Transpose用法及代碼示例
- Julia LinearAlgebra.det用法及代碼示例
- Julia LinearAlgebra.tril!用法及代碼示例
- Julia LinearAlgebra.schur!用法及代碼示例
- Julia LinearAlgebra.tr用法及代碼示例
- Julia LinearAlgebra.axpby!用法及代碼示例
- Julia LinearAlgebra.adjoint!用法及代碼示例
- Julia LinearAlgebra.eigvecs用法及代碼示例
- Julia LinearAlgebra.LU用法及代碼示例
- Julia LinearAlgebra.isposdef!用法及代碼示例
- Julia LinearAlgebra.LQ用法及代碼示例
- Julia LinearAlgebra.normalize用法及代碼示例
- Julia LinearAlgebra.diag用法及代碼示例
注:本文由純淨天空篩選整理自julialang.org 大神的英文原創作品 LinearAlgebra.Eigen — Type。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。