當前位置: 首頁>>代碼示例>>Python>>正文


Python TfidfVectorizer.tokenizer方法代碼示例

本文整理匯總了Python中sklearn.feature_extraction.text.TfidfVectorizer.tokenizer方法的典型用法代碼示例。如果您正苦於以下問題:Python TfidfVectorizer.tokenizer方法的具體用法?Python TfidfVectorizer.tokenizer怎麽用?Python TfidfVectorizer.tokenizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.feature_extraction.text.TfidfVectorizer的用法示例。


在下文中一共展示了TfidfVectorizer.tokenizer方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_most_similar_prop

# 需要導入模塊: from sklearn.feature_extraction.text import TfidfVectorizer [as 別名]
# 或者: from sklearn.feature_extraction.text.TfidfVectorizer import tokenizer [as 別名]
    def get_most_similar_prop(self, text_en, subject_tokens, tokens, print_top_n=5):
        # not include <main_word> in BagOfWord dictionary
        vect = TfidfVectorizer(ngram_range=(1, 3), sublinear_tf=True,
                               tokenizer=txt.QATokenizer('property', debug_info=True),
                               stop_words=subject_tokens)
        prop_descrs = self.get_prop_descrs()
        if prop_descrs:
            props_matrix = vect.fit_transform(prop_descrs)

            # Change tokenizer to handle questions
            vect.tokenizer = txt.QATokenizer('question', debug_info=True)
            q_vector = vect.transform([text_en])
            print('Bag of words vocabulary:', vect.get_feature_names())
            sims = cosine_similarity(q_vector, props_matrix).flatten()
            top_sims = sims.argsort()[:-print_top_n - 1:-1]
            top_n_properties = itemgetter(*top_sims)(self.get_properties())
            print('Top {0} properties by Bag of Words similarity:'.format(print_top_n),
                  *zip(top_n_properties, sims[top_sims]), sep='\n')
            # return Property and confidence level
            return top_n_properties[0], sims[top_sims][0]
開發者ID:max-andr,項目名稱:deepanswer,代碼行數:22,代碼來源:qa.py

示例2: train_tfidf

# 需要導入模塊: from sklearn.feature_extraction.text import TfidfVectorizer [as 別名]
# 或者: from sklearn.feature_extraction.text.TfidfVectorizer import tokenizer [as 別名]
	def train_tfidf(self, tokenizer='custom', corpus='news'):

		if tokenizer == 'custom':
			tokenizer = self.tokenize

		nltk_corpus = []
		if corpus == 'all':
			nltk_corpus += [nltk.corpus.gutenberg.raw(f_id) for f_id in nltk.corpus.gutenberg.fileids()]
			nltk_corpus += [nltk.corpus.webtext.raw(f_id) for f_id in nltk.corpus.webtext.fileids()]
			nltk_corpus += [nltk.corpus.brown.raw(f_id) for f_id in nltk.corpus.brown.fileids()]
			nltk_corpus += [nltk.corpus.reuters.raw(f_id) for f_id in nltk.corpus.reuters.fileids()]
		elif corpus == 'news':
			nltk_corpus += self.get_bbc_news_corpus()

		if self.verbose:
			print "LENGTH nltk corpus corpus: {}".format(sum([len(d) for d in nltk_corpus]))


		vectorizer = TfidfVectorizer(
			max_df=1.0,
			min_df=2,
			encoding='utf-8',
			decode_error='strict',
			max_features=None,
			stop_words='english',
			ngram_range=(1, 3),
			norm='l2',
			tokenizer=tokenizer,
			use_idf=True,
			sublinear_tf=False)

		#vectorizer.fit_transform(nltk_corpus)
		vectorizer.fit(nltk_corpus)
		# Avoid having to pickle instance methods, we will set this method on on load
		vectorizer.tokenizer = None
		keys = np.array(vectorizer.vocabulary_.keys(), dtype=str)
		values = np.array(vectorizer.vocabulary_.values(), dtype=int)
		stop_words = np.array(list(vectorizer.stop_words_), dtype=str)

		with tables.openFile(self.data_path + 'tfidf_keys.hdf', 'w') as f:
			atom = tables.Atom.from_dtype(keys.dtype)
			ds = f.createCArray(f.root, 'keys', atom, keys.shape)
			ds[:] = keys

		with tables.openFile(self.data_path + 'tfidf_values.hdf', 'w') as f:
			atom = tables.Atom.from_dtype(values.dtype)
			ds = f.createCArray(f.root, 'values', atom, values.shape)
			ds[:] = values

		with tables.openFile(self.data_path + 'tfidf_stop_words.hdf', 'w') as f:
			atom = tables.Atom.from_dtype(stop_words.dtype)
			ds = f.createCArray(f.root, 'stop_words', atom, stop_words.shape)
			ds[:] = stop_words

		vectorizer.vocabulary_ = None
		vectorizer.stop_words_ = None

		with open(self.data_path + 'tfidf.pkl', 'wb') as fin:
			cPickle.dump(vectorizer, fin)

		vectorizer.vocabulary_ = dict(zip(keys, values))
		vectorizer.stop_words_ = stop_words

		return vectorizer
開發者ID:webeng,項目名稱:feature_engineering,代碼行數:66,代碼來源:keywords.py


注:本文中的sklearn.feature_extraction.text.TfidfVectorizer.tokenizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。