當前位置: 首頁>>代碼示例>>Python>>正文


Python TfidfVectorizer.count_chunks方法代碼示例

本文整理匯總了Python中sklearn.feature_extraction.text.TfidfVectorizer.count_chunks方法的典型用法代碼示例。如果您正苦於以下問題:Python TfidfVectorizer.count_chunks方法的具體用法?Python TfidfVectorizer.count_chunks怎麽用?Python TfidfVectorizer.count_chunks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.feature_extraction.text.TfidfVectorizer的用法示例。


在下文中一共展示了TfidfVectorizer.count_chunks方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_model

# 需要導入模塊: from sklearn.feature_extraction.text import TfidfVectorizer [as 別名]
# 或者: from sklearn.feature_extraction.text.TfidfVectorizer import count_chunks [as 別名]
    def _get_model(self, feature):
        '''
        computes the vector/matrix for feature and returns a DictVectorizer
        :param feature: feature name
        :return: vec: DictVectorzier, train/test_matrix: matrix from self.train/self.test fitted on vec
        '''

        if feature == "skipgrams":

            vec = skipgrams.SkipgramVectorizer()
            matrix = vec.fit_transform(self.train_unified)

            support = SelectKBest(chi2, self.max_features[feature]).fit(matrix, self.y_train)
            vec.restrict(support.get_support())

            train_matrix = vec.transform(self.train_unified)
            test_matrix = vec.transform(self.test_unified)

            return vec, train_matrix, test_matrix

        if feature == "#tokens":

            train_matrix = token_counter.countTokens(self.train_unified)
            test_matrix = token_counter.countTokens(self.test_unified)

            return None, train_matrix, test_matrix

        if feature == "wordpairs":

            vec = wordpairs.WordpairVectorizer()
            matrix = vec.fit_transform(self.train)

            support = SelectKBest(chi2, self.max_features[feature]).fit(matrix, self.y_train)
            vec.restrict(support.get_support())

            train_matrix = vec.transform(self.train)
            test_matrix = vec.transform(self.test)

            return vec, train_matrix, test_matrix

        if feature == "modals":

            vec = modality.ModelVectozier()

            train_matrix = vec.check_modality(self.train_raw)
            test_matrix = vec.check_modality(self.test_raw)

            return None, train_matrix, test_matrix

        if feature == "ngrams":

            vec = TfidfVectorizer(ngram_range=(1, 2), max_features=self.max_features[feature])

            train_matrix = vec.fit_transform(self.train_unified)
            test_matrix = vec.transform(self.test_unified)

            return vec, train_matrix, test_matrix

        if feature == "doc2vec":

            #load existing model
            #model = Doc2Vec.load(fname)

            #train model
            model = doc2vec.train_model(doc2vec.prep_data(self.train_unified))

            #save model
            #model.save(fname)

            train_matrix = doc2vec.get_train_X(model, len(self.train_unified))
            test_matrix = doc2vec.transform(model, self.test_unified)

            return model, train_matrix, test_matrix

        if feature == "#chunks":

            vec = chunk_counter.ChunkcountVectorizer()

            train_matrix = vec.count_chunks(self.train_raw)
            test_matrix = vec.count_chunks(self.test_raw)

            return None, train_matrix, test_matrix

        if feature == "#args":

            vec = chunk_counter.ChunkcountVectorizer()

            train_matrix = vec.count_args(self.train_raw)
            test_matrix = vec.count_args(self.test_raw)

            return None, train_matrix, test_matrix
開發者ID:tomaye,項目名稱:Thesis,代碼行數:93,代碼來源:pipeline.py


注:本文中的sklearn.feature_extraction.text.TfidfVectorizer.count_chunks方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。