本文整理匯總了Python中anuga.shallow_water.shallow_water_domain.Domain.set_quantities_to_be_stored方法的典型用法代碼示例。如果您正苦於以下問題:Python Domain.set_quantities_to_be_stored方法的具體用法?Python Domain.set_quantities_to_be_stored怎麽用?Python Domain.set_quantities_to_be_stored使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類anuga.shallow_water.shallow_water_domain.Domain
的用法示例。
在下文中一共展示了Domain.set_quantities_to_be_stored方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_read_sww
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_quantities_to_be_stored [as 別名]
def test_read_sww(self):
"""
Save to an sww file and then read back the info.
Here we store the info "uniquely"
"""
# ---------------------------------------------------------------------
# Import necessary modules
# ---------------------------------------------------------------------
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water.shallow_water_domain import Domain
from anuga import Reflective_boundary
from anuga.abstract_2d_finite_volumes.generic_boundary_conditions import Dirichlet_boundary, Time_boundary
# ---------------------------------------------------------------------
# Setup computational domain
# ---------------------------------------------------------------------
length = 8.0
width = 4.0
dx = dy = 2 # Resolution: Length of subdivisions on both axes
inc = 0.05 # Elevation increment
points, vertices, boundary = rectangular_cross(int(length / dx), int(width / dy), len1=length, len2=width)
domain = Domain(points, vertices, boundary)
domain.set_name("read_sww_test" + str(domain.processor)) # Output name
domain.set_quantities_to_be_stored({"elevation": 2, "stage": 2, "xmomentum": 2, "ymomentum": 2, "friction": 1})
domain.set_store_vertices_uniquely(True)
# ---------------------------------------------------------------------
# Setup initial conditions
# ---------------------------------------------------------------------
domain.set_quantity("elevation", 0.0) # Flat bed initially
domain.set_quantity("friction", 0.01) # Constant friction
domain.set_quantity("stage", 0.0) # Dry initial condition
# ------------------------------------------------------------------
# Setup boundary conditions
# ------------------------------------------------------------------
Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = Reflective_boundary(domain) # Solid reflective wall
Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow
domain.set_boundary({"left": Bi, "right": Bo, "top": Br, "bottom": Br})
# -------------------------------------------------------------------
# Evolve system through time
# -------------------------------------------------------------------
for t in domain.evolve(yieldstep=1, finaltime=4.0):
pass
# Check that quantities have been stored correctly
source = domain.get_name() + ".sww"
# x = fid.variables['x'][:]
# y = fid.variables['y'][:]
# stage = fid.variables['stage'][:]
# elevation = fid.variables['elevation'][:]
# fid.close()
# assert len(stage.shape) == 2
# assert len(elevation.shape) == 2
# M, N = stage.shape
sww_file = sww.Read_sww(source)
# print 'last frame number',sww_file.get_last_frame_number()
assert num.allclose(sww_file.x, domain.get_vertex_coordinates()[:, 0])
assert num.allclose(sww_file.y, domain.get_vertex_coordinates()[:, 1])
assert num.allclose(sww_file.time, [0.0, 1.0, 2.0, 3.0, 4.0])
M = domain.get_number_of_triangles()
assert num.allclose(num.reshape(num.arange(3 * M), (M, 3)), sww_file.vertices)
last_frame_number = sww_file.get_last_frame_number()
assert last_frame_number == 4
assert num.allclose(sww_file.get_bounds(), [0.0, length, 0.0, width])
assert "stage" in sww_file.quantities.keys()
assert "friction" in sww_file.quantities.keys()
assert "elevation" in sww_file.quantities.keys()
assert "xmomentum" in sww_file.quantities.keys()
assert "ymomentum" in sww_file.quantities.keys()
for qname, q in sww_file.read_quantities(last_frame_number).items():
# print qname
# print num.linalg.norm(num.abs((domain.get_quantity(qname).get_values()-q).flatten()), ord=1)
assert num.allclose(domain.get_quantity(qname).get_values(), q)
# -----------------------------------------
# Start the evolution off again at frame 3
#.........這裏部分代碼省略.........
示例2: test_get_flow_through_cross_section_with_geo
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_quantities_to_be_stored [as 別名]
def test_get_flow_through_cross_section_with_geo(self):
"""test_get_flow_through_cross_section(self):
Test that the total flow through a cross section can be
correctly obtained at run-time from the ANUGA domain.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
e = -1 m
u = 2 m/s
h = 2 m
w = 3 m (width of channel)
q = u*h*w = 12 m^3/s
This run tries it with georeferencing and with elevation = -1
"""
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 1
points, vertices, boundary = rectangular(length, width, length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference=Geo_reference(56, 308500, 6189000))
domain.default_order = 2
domain.set_quantities_to_be_stored(None)
e = -1.0
w = 1.0
h = w-e
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet:
# Initial conditions
domain.set_quantity('elevation', e)
domain.set_quantity('stage', w)
domain.set_quantity('xmomentum', uh)
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
# Interpolation points down the middle
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
interpolation_points = domain.geo_reference.get_absolute(I)
for t in domain.evolve(yieldstep=0.1, finaltime=0.5):
# Shortcuts to quantites
stage = domain.get_quantity('stage')
xmomentum = domain.get_quantity('xmomentum')
ymomentum = domain.get_quantity('ymomentum')
# Check that quantities are they should be in the interior
w_t = stage.get_values(interpolation_points)
uh_t = xmomentum.get_values(interpolation_points)
vh_t = ymomentum.get_values(interpolation_points)
assert num.allclose(w_t, w)
assert num.allclose(uh_t, uh)
assert num.allclose(vh_t, 0.0, atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
cross_section = domain.geo_reference.get_absolute(cross_section)
Q = domain.get_flow_through_cross_section(cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
import cPickle
cPickle.dump(domain, open('domain_pickle.pickle', 'w'))
domain_restored = cPickle.load(open('domain_pickle.pickle'))
for t in domain_restored.evolve(yieldstep=0.1, finaltime=1.0):
# Shortcuts to quantites
stage = domain_restored.get_quantity('stage')
xmomentum = domain_restored.get_quantity('xmomentum')
ymomentum = domain_restored.get_quantity('ymomentum')
# Check that quantities are they should be in the interior
w_t = stage.get_values(interpolation_points)
uh_t = xmomentum.get_values(interpolation_points)
vh_t = ymomentum.get_values(interpolation_points)
assert num.allclose(w_t, w)
assert num.allclose(uh_t, uh)
assert num.allclose(vh_t, 0.0, atol=1.0e-6)
#.........這裏部分代碼省略.........