本文整理匯總了Python中anuga.shallow_water.shallow_water_domain.Domain.set_name方法的典型用法代碼示例。如果您正苦於以下問題:Python Domain.set_name方法的具體用法?Python Domain.set_name怎麽用?Python Domain.set_name使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類anuga.shallow_water.shallow_water_domain.Domain
的用法示例。
在下文中一共展示了Domain.set_name方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_domain
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def _create_domain(self,d_length,
d_width,
dx,
dy,
elevation_0,
elevation_1,
stage_0,
stage_1):
points, vertices, boundary = rectangular_cross(int(d_length/dx), int(d_width/dy),
len1=d_length, len2=d_width)
domain = Domain(points, vertices, boundary)
domain.set_name('Test_Outlet_Inlet') # Output name
domain.set_store()
domain.set_default_order(2)
domain.H0 = 0.01
domain.tight_slope_limiters = 1
#print 'Size', len(domain)
#------------------------------------------------------------------------------
# Setup initial conditions
#------------------------------------------------------------------------------
def elevation(x, y):
"""Set up a elevation
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = elevation_0
numpy.putmask(z, x > d_length/2, elevation_1)
return z
def stage(x,y):
"""Set up stage
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = stage_0
numpy.putmask(z, x > d_length/2, stage_1)
return z
#print 'Setting Quantities....'
domain.set_quantity('elevation', elevation) # Use function for elevation
domain.set_quantity('stage', stage) # Use function for elevation
Br = anuga.Reflective_boundary(domain)
domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})
return domain
示例2: test_merge_swwfiles
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_merge_swwfiles(self):
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular, \
rectangular_cross
from anuga.shallow_water.shallow_water_domain import Domain
from anuga.file.sww import SWW_file
from anuga.abstract_2d_finite_volumes.generic_boundary_conditions import \
Dirichlet_boundary
Bd = Dirichlet_boundary([0.5, 0., 0.])
# Create shallow water domain
domain = Domain(*rectangular_cross(2, 2))
domain.set_name('test1')
domain.set_quantity('elevation', 2)
domain.set_quantity('stage', 5)
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
for t in domain.evolve(yieldstep=0.5, finaltime=1):
pass
domain = Domain(*rectangular(3, 3))
domain.set_name('test2')
domain.set_quantity('elevation', 3)
domain.set_quantity('stage', 50)
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
for t in domain.evolve(yieldstep=0.5, finaltime=1):
pass
outfile = 'test_out.sww'
_sww_merge(['test1.sww', 'test2.sww'], outfile)
self.assertTrue(os.access(outfile, os.F_OK))
# remove temp files
if not sys.platform == 'win32':
os.remove('test1.sww')
os.remove('test2.sww')
os.remove(outfile)
示例3: test_read_sww
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_read_sww(self):
"""
Save to an sww file and then read back the info.
Here we store the info "uniquely"
"""
# ---------------------------------------------------------------------
# Import necessary modules
# ---------------------------------------------------------------------
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water.shallow_water_domain import Domain
from anuga import Reflective_boundary
from anuga.abstract_2d_finite_volumes.generic_boundary_conditions import Dirichlet_boundary, Time_boundary
# ---------------------------------------------------------------------
# Setup computational domain
# ---------------------------------------------------------------------
length = 8.0
width = 4.0
dx = dy = 2 # Resolution: Length of subdivisions on both axes
inc = 0.05 # Elevation increment
points, vertices, boundary = rectangular_cross(int(length / dx), int(width / dy), len1=length, len2=width)
domain = Domain(points, vertices, boundary)
domain.set_name("read_sww_test" + str(domain.processor)) # Output name
domain.set_quantities_to_be_stored({"elevation": 2, "stage": 2, "xmomentum": 2, "ymomentum": 2, "friction": 1})
domain.set_store_vertices_uniquely(True)
# ---------------------------------------------------------------------
# Setup initial conditions
# ---------------------------------------------------------------------
domain.set_quantity("elevation", 0.0) # Flat bed initially
domain.set_quantity("friction", 0.01) # Constant friction
domain.set_quantity("stage", 0.0) # Dry initial condition
# ------------------------------------------------------------------
# Setup boundary conditions
# ------------------------------------------------------------------
Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = Reflective_boundary(domain) # Solid reflective wall
Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow
domain.set_boundary({"left": Bi, "right": Bo, "top": Br, "bottom": Br})
# -------------------------------------------------------------------
# Evolve system through time
# -------------------------------------------------------------------
for t in domain.evolve(yieldstep=1, finaltime=4.0):
pass
# Check that quantities have been stored correctly
source = domain.get_name() + ".sww"
# x = fid.variables['x'][:]
# y = fid.variables['y'][:]
# stage = fid.variables['stage'][:]
# elevation = fid.variables['elevation'][:]
# fid.close()
# assert len(stage.shape) == 2
# assert len(elevation.shape) == 2
# M, N = stage.shape
sww_file = sww.Read_sww(source)
# print 'last frame number',sww_file.get_last_frame_number()
assert num.allclose(sww_file.x, domain.get_vertex_coordinates()[:, 0])
assert num.allclose(sww_file.y, domain.get_vertex_coordinates()[:, 1])
assert num.allclose(sww_file.time, [0.0, 1.0, 2.0, 3.0, 4.0])
M = domain.get_number_of_triangles()
assert num.allclose(num.reshape(num.arange(3 * M), (M, 3)), sww_file.vertices)
last_frame_number = sww_file.get_last_frame_number()
assert last_frame_number == 4
assert num.allclose(sww_file.get_bounds(), [0.0, length, 0.0, width])
assert "stage" in sww_file.quantities.keys()
assert "friction" in sww_file.quantities.keys()
assert "elevation" in sww_file.quantities.keys()
assert "xmomentum" in sww_file.quantities.keys()
assert "ymomentum" in sww_file.quantities.keys()
for qname, q in sww_file.read_quantities(last_frame_number).items():
# print qname
# print num.linalg.norm(num.abs((domain.get_quantity(qname).get_values()-q).flatten()), ord=1)
assert num.allclose(domain.get_quantity(qname).get_values(), q)
# -----------------------------------------
# Start the evolution off again at frame 3
#.........這裏部分代碼省略.........
示例4: rectangular_cross
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
# Setup computational domain
#------------------------------------------------------------------------------
print 'Setting up domain'
length = 200. #x-Dir
width = 200. #y-dir
dx = dy = 2.0 # Resolution: Length of subdivisions on both axes
#dx = dy = .5 # Resolution: Length of subdivisions on both axes
#dx = dy = .5 # Resolution: Length of subdivisions on both axes
#dx = dy = .1 # Resolution: Length of subdivisions on both axes
points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
len1=length, len2=width)
domain = Domain(points, vertices, boundary)
domain.set_name('Test_WIDE_BRIDGE') # Output name
#domain.set_default_order(2)
#omain.H0 = 0.01
#domain.tight_slope_limiters = 1
domain.set_flow_algorithm('2_0')
print 'Size', len(domain)
#------------------------------------------------------------------------------
# Setup initial conditions
#------------------------------------------------------------------------------
def topography(x, y):
"""Set up a weir
示例5: test_get_mesh_and_quantities_from_unique_vertices_DE0_sww_file
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_get_mesh_and_quantities_from_unique_vertices_DE0_sww_file(self):
"""test_get_mesh_and_quantities_from_unique_vertices_sww_file(self):
"""
# Generate a test sww file with non trivial georeference
import time, os
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 5m)
width = 5
length = 50
t_end = 10
points, vertices, boundary = rectangular(10, 1, length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.set_name('test_get_mesh_and_quantities_from_unique_vertices_sww_file')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.set_flow_algorithm('DE0')
domain.set_store_vertices_uniquely()
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([1, 0, 0]) # inflow
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Read it
# Get mesh and quantities from sww file
X = get_mesh_and_quantities_from_file(swwfile,
quantities=['elevation',
'stage',
'xmomentum',
'ymomentum'],
verbose=False)
mesh, quantities, time = X
#print quantities
#print time
dhash = domain.get_nodes()[:,0]*10+domain.get_nodes()[:,1]
mhash = mesh.nodes[:,0]*10+mesh.nodes[:,1]
#print 'd_nodes',len(dhash)
#print 'm_nodes',len(mhash)
di = num.argsort(dhash)
mi = num.argsort(mhash)
minv = num.argsort(mi)
dinv = num.argsort(di)
#print 'd_tri',len(domain.get_triangles())
#print 'm_tri',len(mesh.triangles)
# Check that mesh has been recovered
# triangle order should be ok
assert num.allclose(mesh.nodes[mi,:],domain.get_nodes()[di,:])
assert num.alltrue(minv[mesh.triangles] == dinv[domain.get_triangles()])
# Check that time has been recovered
assert num.allclose(time, range(t_end+1))
z=domain.get_quantity('elevation').get_values(location='vertices').flatten()
assert num.allclose(quantities['elevation'], z)
for q in ['stage', 'xmomentum', 'ymomentum']:
# Get quantity at last timestep
q_ref=domain.get_quantity(q).get_values(location='vertices').flatten()
#print q,quantities[q]
q_sww=quantities[q][-1,:]
msg = 'Quantity %s failed to be recovered' %q
assert num.allclose(q_ref, q_sww, atol=1.0e-6), msg
示例6: test_get_mesh_and_quantities_from_de0_sww_file
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_get_mesh_and_quantities_from_de0_sww_file(self):
"""test_get_mesh_and_quantities_from_sww_file(self):
"""
# Generate a test sww file with non trivial georeference
import time, os
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 5m)
width = 5
length = 50
t_end = 10
points, vertices, boundary = rectangular(length, width, 50, 5)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.set_name('test_get_mesh_and_quantities_from_sww_file')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.set_flow_algorithm('DE0')
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([1, 0, 0]) # inflow
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Read it
# Get mesh and quantities from sww file
X = get_mesh_and_quantities_from_file(swwfile,
quantities=['elevation',
'stage',
'xmomentum',
'ymomentum'],
verbose=False)
mesh, quantities, time = X
# Check that mesh has been recovered
assert num.alltrue(mesh.triangles == domain.get_triangles())
assert num.allclose(mesh.nodes, domain.get_nodes())
# Check that time has been recovered
assert num.allclose(time, range(t_end+1))
# Check that quantities have been recovered
# (sww files use single precision)
z=domain.get_quantity('elevation').get_values(location='unique vertices')
assert num.allclose(quantities['elevation'], z)
for q in ['stage', 'xmomentum', 'ymomentum']:
# Get quantity at last timestep
q_ref=domain.get_quantity(q).get_values(location='unique vertices')
#print q,quantities[q]
q_sww=quantities[q][-1,:]
msg = 'Quantity %s failed to be recovered' %q
assert num.allclose(q_ref, q_sww, atol=1.0e-2), msg
示例7: test_sww2domain1
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_sww2domain1(self):
################################################
#Create a test domain, and evolve and save it.
################################################
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
#Create basic mesh
yiel=0.01
points, vertices, boundary = rectangular(10,10)
#print "=============== boundary rect ======================="
#print boundary
#Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.geo_reference = Geo_reference(56,11,11)
domain.smooth = False
domain.store = True
domain.set_name('bedslope')
domain.default_order=2
#Bed-slope and friction
domain.set_quantity('elevation', lambda x,y: -x/3)
domain.set_quantity('friction', 0.1)
# Boundary conditions
from math import sin, pi
Br = Reflective_boundary(domain)
Bt = Transmissive_boundary(domain)
Bd = Dirichlet_boundary([0.2,0.,0.])
Bw = Time_boundary(domain=domain,function=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0])
#domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br})
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
domain.quantities_to_be_stored['xmomentum'] = 2
domain.quantities_to_be_stored['ymomentum'] = 2
#Initial condition
h = 0.05
elevation = domain.quantities['elevation'].vertex_values
domain.set_quantity('stage', elevation + h)
domain.check_integrity()
#Evolution
#domain.tight_slope_limiters = 1
for t in domain.evolve(yieldstep = yiel, finaltime = 0.05):
#domain.write_time()
pass
#print boundary
filename = domain.datadir + os.sep + domain.get_name() + '.sww'
domain2 = load_sww_as_domain(filename, None, fail_if_NaN=False,
verbose=self.verbose)
# Unfortunately we loss the boundaries top, bottom, left and right,
# they are now all lumped into "exterior"
#print "=============== boundary domain2 ======================="
#print domain2.boundary
#print domain2.get_boundary_tags()
#points, vertices, boundary = rectangular(15,15)
#domain2.boundary = boundary
###################
##NOW TEST IT!!!
###################
os.remove(filename)
bits = ['vertex_coordinates']
for quantity in ['stage']:
bits.append('get_quantity("%s").get_integral()' % quantity)
bits.append('get_quantity("%s").get_values()' % quantity)
for bit in bits:
#print 'testing that domain.'+bit+' has been restored'
#print bit
#print 'done'
#print eval('domain.'+bit)
#print eval('domain2.'+bit)
assert num.allclose(eval('domain.'+bit),eval('domain2.'+bit))
######################################
#Now evolve them both, just to be sure
######################################x
from time import sleep
final = .1
domain.set_quantity('friction', 0.1)
domain.store = False
domain.set_boundary({'exterior': Bd, 'left' : Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
for t in domain.evolve(yieldstep = yiel, finaltime = final):
#domain.write_time()
pass
#.........這裏部分代碼省略.........
示例8: test_get_maximum_inundation_from_sww
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_get_maximum_inundation_from_sww(self):
"""test_get_maximum_inundation_from_sww(self)
Test of get_maximum_inundation_elevation()
and get_maximum_inundation_location().
This is based on test_get_maximum_inundation_3(self) but works with the
stored results instead of with the internal data structure.
This test uses the underlying get_maximum_inundation_data for tests
"""
verbose = False
from anuga.config import minimum_storable_height
initial_runup_height = -0.4
final_runup_height = -0.3
filename = 'runup_test_2'
#--------------------------------------------------------------
# Setup computational domain
#--------------------------------------------------------------
N = 10
points, vertices, boundary = rectangular_cross(N, N)
domain = Domain(points, vertices, boundary)
domain.set_name(filename)
domain.set_maximum_allowed_speed(1.0)
#domain.set_minimum_storable_height(1.0e-5)
domain.set_store_vertices_uniquely()
# FIXME: This works better with old limiters so far
domain.tight_slope_limiters = 0
#--------------------------------------------------------------
# Setup initial conditions
#--------------------------------------------------------------
def topography(x, y):
return -x/2 # linear bed slope
# Use function for elevation
domain.set_quantity('elevation', topography)
domain.set_quantity('friction', 0.) # Zero friction
# Constant negative initial stage
domain.set_quantity('stage', initial_runup_height)
#--------------------------------------------------------------
# Setup boundary conditions
#--------------------------------------------------------------
Br = Reflective_boundary(domain) # Reflective wall
Bd = Dirichlet_boundary([final_runup_height, 0, 0]) # Constant inflow
# All reflective to begin with (still water)
domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})
#--------------------------------------------------------------
# Test initial inundation height
#--------------------------------------------------------------
indices = domain.get_wet_elements()
z = domain.get_quantity('elevation').\
get_values(location='centroids', indices=indices)
assert num.alltrue(z < initial_runup_height)
q_ref = domain.get_maximum_inundation_elevation(minimum_height=minimum_storable_height)
# First order accuracy
assert num.allclose(q_ref, initial_runup_height, rtol=1.0/N)
#--------------------------------------------------------------
# Let triangles adjust
#--------------------------------------------------------------
q_max = None
for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0):
q = domain.get_maximum_inundation_elevation(minimum_height=minimum_storable_height)
if verbose:
domain.write_time()
print q
if q > q_max:
q_max = q
#--------------------------------------------------------------
# Test inundation height again
#--------------------------------------------------------------
#q_ref = domain.get_maximum_inundation_elevation()
q = get_maximum_inundation_elevation(filename+'.sww')
msg = 'We got %f, should have been %f' % (q, q_max)
assert num.allclose(q, q_max, rtol=2.0/N), msg
msg = 'We got %f, should have been %f' % (q, initial_runup_height)
assert num.allclose(q, initial_runup_height, rtol = 1.0/N), msg
# Test error condition if time interval is out
try:
q = get_maximum_inundation_elevation(filename+'.sww',
time_interval=[2.0, 3.0])
except ValueError:
pass
else:
msg = 'should have caught wrong time interval'
raise Exception, msg
#.........這裏部分代碼省略.........
示例9: test_earthquake_tsunami
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_earthquake_tsunami(self):
from os import sep, getenv
import sys
from anuga.abstract_2d_finite_volumes.mesh_factory \
import rectangular_cross
from anuga.abstract_2d_finite_volumes.quantity import Quantity
from anuga.utilities.system_tools import get_pathname_from_package
"""
Pick the test you want to do; T= 0 test a point source,
T= 1 test single rectangular source, T= 2 test multiple
rectangular sources
"""
# Get path where this test is run
path= get_pathname_from_package('anuga.tsunami_source')
# Choose what test to proceed
T=1
if T==0:
# Fortran output file
filename = path+sep+'tests'+sep+'data'+sep+'fullokada_SP.txt'
# Initial condition of earthquake for multiple source
x0 = 7000.0
y0 = 10000.0
length = 0
width =0
strike = 0.0
depth = 15.0
slip = 10.0
dip =15.0
rake =90.0
ns=1
NSMAX=1
elif T==1:
# Fortran output file
filename = path+sep+'tests'+sep+'data'+sep+'fullokada_SS.txt'
# Initial condition of earthquake for multiple source
x0 = 7000.0
y0 = 10000.0
length = 10.0
width =6.0
strike = 0.0
depth = 15.0
slip = 10.0
dip =15.0
rake =90.0
ns=1
NSMAX=1
elif T==2:
# Fortran output file
filename = path+sep+'tests'+sep+'data'+sep+'fullokada_MS.txt'
# Initial condition of earthquake for multiple source
x0 = [7000.0,10000.0]
y0 = [10000.0,7000.0]
length = [10.0,10.0]
width =[6.0,6.0]
strike = [0.0,0.0]
depth = [15.0,15.0]
slip = [10.0,10.0]
dip = [15.0,15.0]
rake = [90.0,90.0]
ns=2
NSMAX=2
# Get output file from original okada fortran script.
# Vertical displacement is listed under tmp.
polyline_file=open(filename,'r')
lines=polyline_file.readlines()
polyline_file.close()
tmp=[]
stage=[]
for line in lines [0:]:
field = line.split(' ')
z=float(field[2])
tmp.append(z)
# Create domain
dx = dy = 4000
l=20000
w=20000
# Create topography
def topography(x,y):
el=-1000
return el
points, vertices, boundary = rectangular_cross(int(l/dx), int(w/dy),
len1=l, len2=w)
domain = Domain(points, vertices, boundary)
domain.set_name('test')
domain.set_quantity('elevation',topography)
#.........這裏部分代碼省略.........
示例10: test_get_flow_through_cross_section_stored_uniquely
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_get_flow_through_cross_section_stored_uniquely(self):
"""test_get_flow_through_cross_section_stored_uniquely(self):
Test that the total flow through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 3
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest_uniquely')
swwfile = domain.get_name() + '.sww'
domain.set_store_vertices_uniquely()
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
h = 1.0
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([h, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', 0.0)
domain.set_quantity('stage', h)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
assert num.allclose(f(t, i), [1, 2, 0], atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
# Try the same with partial lines
x = length/2.
for i in range(5):
start_point = [length/2., i*width/5.]
#print start_point
cross_section = [start_point, [length/2., width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
#.........這裏部分代碼省略.........
示例11: test_get_maximum_inundation_de0
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_get_maximum_inundation_de0(self):
"""Test that sww information can be converted correctly to maximum
runup elevation and location (without and with georeferencing)
This test creates a slope and a runup which is maximal (~11m) at around 10s
and levels out to the boundary condition (1m) at about 30s.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
#Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 100m)
points, vertices, boundary = rectangular(20, 5, 100, 50)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
filename = 'runup_test_3'
domain.set_name(filename)
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
# FIXME (Ole): Backwards compatibility
# Look at sww file and see what happens when
# domain.tight_slope_limiters = 1
domain.tight_slope_limiters = 0
domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8)
Br = Reflective_boundary(domain)
Bd = Dirichlet_boundary([1.0,0,0])
#---------- First run without geo referencing
domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope
domain.set_quantity('stage', -6)
domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = 50):
pass
# Check maximal runup
runup = get_maximum_inundation_elevation(swwfile)
location = get_maximum_inundation_location(swwfile)
#print 'Runup, location', runup, location
assert num.allclose(runup, 4.66666666667)
assert num.allclose(location[0], 46.666668)
# Check final runup
runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50])
location = get_maximum_inundation_location(swwfile, time_interval=[45,50])
#print 'Runup, location:',runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.666668)
# Check runup restricted to a polygon
p = [[50,1], [99,1], [99,49], [50,49]]
runup = get_maximum_inundation_elevation(swwfile, polygon=p)
location = get_maximum_inundation_location(swwfile, polygon=p)
#print runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.6666666)
# Check that mimimum_storable_height works
fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file
stage = fid.variables['stage_c'][:]
z = fid.variables['elevation_c'][:]
xmomentum = fid.variables['xmomentum_c'][:]
ymomentum = fid.variables['ymomentum_c'][:]
for i in range(stage.shape[0]):
h = stage[i]-z # depth vector at time step i
# Check every node location
for j in range(stage.shape[1]):
# Depth being either exactly zero implies
# momentum being zero.
# Or else depth must be greater than or equal to
# the minimal storable height
if h[j] == 0.0:
assert xmomentum[i,j] == 0.0
assert ymomentum[i,j] == 0.0
else:
assert h[j] >= 0.0
fid.close()
#.........這裏部分代碼省略.........
示例12: setUp
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def setUp(self):
# print "****set up****"
# Create an sww file
# Set up an sww that has a geo ref.
# have it cover an area in Australia. 'gong maybe
# Don't have many triangles though!
# Site Name: GDA-MGA: (UTM with GRS80 ellipsoid)
# Zone: 56
# Easting: 222908.705 Northing: 6233785.284
# Latitude: -34 0 ' 0.00000 '' Longitude: 150 0 ' 0.00000 ''
# Grid Convergence: -1 40 ' 43.13 '' Point Scale: 1.00054660
# geo-ref
# Zone: 56
# Easting: 220000 Northing: 6230000
# have a big area covered.
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-33, 152], [-35, 152], [-35, 150], [-33, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
# domain.set_quantity('stage', 1.0)
domain.set_quantity("elevation", -0.5)
domain.set_quantity("friction", 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
######################
# Initial condition - with jumps
bed = domain.quantities["elevation"].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i, :] = bed[i, :] + h
else:
stage[i, :] = bed[i, :]
domain.set_quantity("stage", stage)
domain.set_quantity("xmomentum", stage * 22.0)
domain.set_quantity("ymomentum", stage * 55.0)
domain.distribute_to_vertices_and_edges()
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:, 0:6:2].copy()
self.Y = C[:, 1:6:2].copy()
self.F = bed
# sww_file = tempfile.mktemp("")
self.domain.set_name("tid_P0")
self.domain.format = "sww"
self.domain.smooth = True
self.domain.reduction = mean
sww = SWW_file(self.domain)
sww.store_connectivity()
sww.store_timestep()
self.domain.time = 2.0
sww.store_timestep()
self.sww = sww # so it can be deleted
# Create another sww file
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-35, 152], [-36, 152], [-36, 150], [-35, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
#.........這裏部分代碼省略.........
示例13: test_inundation_damage_list
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_inundation_damage_list(self):
# create mesh
mesh_file = tempfile.mktemp(".tsh")
points = [[0.0, 0.0], [6.0, 0.0], [6.0, 6.0], [0.0, 6.0]]
m = Mesh()
m.add_vertices(points)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
domain.set_quantity("elevation", elevation_function)
domain.set_quantity("friction", 0.03)
domain.set_quantity("xmomentum", 22.0)
domain.set_quantity("ymomentum", 55.0)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
# This call mangles the stage values.
domain.distribute_to_vertices_and_edges()
domain.set_quantity("stage", 0.3)
# sww_file = tempfile.mktemp("")
domain.set_name("datatest" + str(time.time()))
domain.format = "sww"
domain.smooth = True
domain.reduction = mean
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
domain.set_quantity("stage", -0.3)
domain.time = 2.0
sww.store_timestep()
# Create a csv file
csv_file = tempfile.mktemp(".csv")
fd = open(csv_file, "wb")
writer = csv.writer(fd)
writer.writerow(["x", "y", STR_VALUE_LABEL, CONT_VALUE_LABEL, "ROOF_TYPE", WALL_TYPE_LABEL, SHORE_DIST_LABEL])
writer.writerow([5.5, 0.5, "10", "130000", "Metal", "Timber", 20])
writer.writerow([4.5, 1.0, "150", "76000", "Metal", "Double Brick", 20])
writer.writerow([0.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
writer.writerow([6.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
fd.close()
extension = ".csv"
csv_fileII = tempfile.mktemp(extension)
fd = open(csv_fileII, "wb")
writer = csv.writer(fd)
writer.writerow(["x", "y", STR_VALUE_LABEL, CONT_VALUE_LABEL, "ROOF_TYPE", WALL_TYPE_LABEL, SHORE_DIST_LABEL])
writer.writerow([5.5, 0.5, "10", "130000", "Metal", "Timber", 20])
writer.writerow([4.5, 1.0, "150", "76000", "Metal", "Double Brick", 20])
writer.writerow([0.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
writer.writerow([6.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
fd.close()
sww_file = domain.get_name() + "." + domain.format
# print "sww_file",sww_file
marker = "_gosh"
inundation_damage(sww_file, [csv_file, csv_fileII], exposure_file_out_marker=marker, verbose=False)
# Test one file
csv_handle = Exposure(csv_file[:-4] + marker + extension)
struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE)
# print "struct_loss",struct_loss
struct_loss = [float(x) for x in struct_loss]
# pprint(struct_loss)
assert num.allclose(struct_loss, [10.0, 150.0, 66.55333347876866, 0.0])
depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE)
# print "depth",depth
depth = [float(x) for x in depth]
assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3])
# Test another file
csv_handle = Exposure(csv_fileII[:-4] + marker + extension)
struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE)
# print "struct_loss",struct_loss
struct_loss = [float(x) for x in struct_loss]
# pprint(struct_loss)
assert num.allclose(struct_loss, [10.0, 150.0, 66.553333478768664, 0.0])
depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE)
# print "depth",depth
depth = [float(x) for x in depth]
assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3])
os.remove(sww.filename)
os.remove(csv_file)
os.remove(csv_fileII)
示例14: _create_domain
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def _create_domain(self,d_length,
d_width,
dx,
dy,
elevation_0,
elevation_1,
stage_0,
stage_1,
xvelocity_0 = 0.0,
xvelocity_1 = 0.0,
yvelocity_0 = 0.0,
yvelocity_1 = 0.0):
points, vertices, boundary = rectangular_cross(int(d_length/dx), int(d_width/dy),
len1=d_length, len2=d_width)
domain = Domain(points, vertices, boundary)
domain.set_name('Test_Outlet_Inlet') # Output name
domain.set_store()
domain.set_default_order(2)
domain.H0 = 0.01
domain.tight_slope_limiters = 1
#print 'Size', len(domain)
#------------------------------------------------------------------------------
# Setup initial conditions
#------------------------------------------------------------------------------
def elevation(x, y):
"""Set up a elevation
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = elevation_0
numpy.putmask(z, x > d_length/2, elevation_1)
return z
def stage(x,y):
"""Set up stage
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = stage_0
numpy.putmask(z, x > d_length/2, stage_1)
return z
def xmom(x,y):
"""Set up xmomentum
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = xvelocity_0*(stage_0-elevation_0)
numpy.putmask(z, x > d_length/2, xvelocity_1*(stage_1-elevation_1) )
return z
def ymom(x,y):
"""Set up ymomentum
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = yvelocity_0*(stage_0-elevation_0)
numpy.putmask(z, x > d_length/2, yvelocity_1*(stage_1-elevation_1) )
return z
#print 'Setting Quantities....'
domain.set_quantity('elevation', elevation) # Use function for elevation
domain.set_quantity('stage', stage) # Use function for elevation
domain.set_quantity('xmomentum', xmom)
domain.set_quantity('ymomentum', ymom)
return domain
示例15: test_sww2pts_centroids_de0
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_name [as 別名]
def test_sww2pts_centroids_de0(self):
"""Test that sww information can be converted correctly to pts data at specified coordinates
- in this case, the centroids.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Used for points that lie outside mesh
NODATA_value = 1758323
# Setup
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create shallow water domain
domain = Domain(*rectangular(2, 2))
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
domain.set_name('datatest_de0')
ptsfile = domain.get_name() + '_elevation.pts'
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.set_quantity('elevation', lambda x,y: -x-y)
domain.geo_reference = Geo_reference(56,308500,6189000)
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
#self.domain.tight_slope_limiters = 1
domain.evolve_to_end(finaltime = 0.01)
sww.store_timestep()
# Check contents in NetCDF
fid = NetCDFFile(sww.filename, netcdf_mode_r)
# Get the variables
x = fid.variables['x'][:]
y = fid.variables['y'][:]
elevation = fid.variables['elevation'][:]
time = fid.variables['time'][:]
stage = fid.variables['stage'][:]
volumes = fid.variables['volumes'][:]
# Invoke interpolation for vertex points
points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 )
points = num.ascontiguousarray(points)
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
ref_point_values = elevation
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
# Invoke interpolation for centroids
points = domain.get_centroid_coordinates()
#print points
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
#ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids
ref_point_values = [-0.77777777, -0.77777777, -0.99999998, -0.99999998,
-0.99999998, -0.99999998, -1.22222221, -1.22222221]
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
fid.close()
#Cleanup
os.remove(sww.filename)
os.remove(ptsfile)