本文整理匯總了Python中anuga.shallow_water.shallow_water_domain.Domain.get_vertex_coordinates方法的典型用法代碼示例。如果您正苦於以下問題:Python Domain.get_vertex_coordinates方法的具體用法?Python Domain.get_vertex_coordinates怎麽用?Python Domain.get_vertex_coordinates使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類anuga.shallow_water.shallow_water_domain.Domain
的用法示例。
在下文中一共展示了Domain.get_vertex_coordinates方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setUp
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import get_vertex_coordinates [as 別名]
def setUp(self):
# print "****set up****"
# Create an sww file
# Set up an sww that has a geo ref.
# have it cover an area in Australia. 'gong maybe
# Don't have many triangles though!
# Site Name: GDA-MGA: (UTM with GRS80 ellipsoid)
# Zone: 56
# Easting: 222908.705 Northing: 6233785.284
# Latitude: -34 0 ' 0.00000 '' Longitude: 150 0 ' 0.00000 ''
# Grid Convergence: -1 40 ' 43.13 '' Point Scale: 1.00054660
# geo-ref
# Zone: 56
# Easting: 220000 Northing: 6230000
# have a big area covered.
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-33, 152], [-35, 152], [-35, 150], [-33, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
# domain.set_quantity('stage', 1.0)
domain.set_quantity("elevation", -0.5)
domain.set_quantity("friction", 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
######################
# Initial condition - with jumps
bed = domain.quantities["elevation"].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i, :] = bed[i, :] + h
else:
stage[i, :] = bed[i, :]
domain.set_quantity("stage", stage)
domain.set_quantity("xmomentum", stage * 22.0)
domain.set_quantity("ymomentum", stage * 55.0)
domain.distribute_to_vertices_and_edges()
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:, 0:6:2].copy()
self.Y = C[:, 1:6:2].copy()
self.F = bed
# sww_file = tempfile.mktemp("")
self.domain.set_name("tid_P0")
self.domain.format = "sww"
self.domain.smooth = True
self.domain.reduction = mean
sww = SWW_file(self.domain)
sww.store_connectivity()
sww.store_timestep()
self.domain.time = 2.0
sww.store_timestep()
self.sww = sww # so it can be deleted
# Create another sww file
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-35, 152], [-36, 152], [-36, 150], [-35, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
#.........這裏部分代碼省略.........
示例2: test_read_sww
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import get_vertex_coordinates [as 別名]
def test_read_sww(self):
"""
Save to an sww file and then read back the info.
Here we store the info "uniquely"
"""
# ---------------------------------------------------------------------
# Import necessary modules
# ---------------------------------------------------------------------
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water.shallow_water_domain import Domain
from anuga import Reflective_boundary
from anuga.abstract_2d_finite_volumes.generic_boundary_conditions import Dirichlet_boundary, Time_boundary
# ---------------------------------------------------------------------
# Setup computational domain
# ---------------------------------------------------------------------
length = 8.0
width = 4.0
dx = dy = 2 # Resolution: Length of subdivisions on both axes
inc = 0.05 # Elevation increment
points, vertices, boundary = rectangular_cross(int(length / dx), int(width / dy), len1=length, len2=width)
domain = Domain(points, vertices, boundary)
domain.set_name("read_sww_test" + str(domain.processor)) # Output name
domain.set_quantities_to_be_stored({"elevation": 2, "stage": 2, "xmomentum": 2, "ymomentum": 2, "friction": 1})
domain.set_store_vertices_uniquely(True)
# ---------------------------------------------------------------------
# Setup initial conditions
# ---------------------------------------------------------------------
domain.set_quantity("elevation", 0.0) # Flat bed initially
domain.set_quantity("friction", 0.01) # Constant friction
domain.set_quantity("stage", 0.0) # Dry initial condition
# ------------------------------------------------------------------
# Setup boundary conditions
# ------------------------------------------------------------------
Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = Reflective_boundary(domain) # Solid reflective wall
Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow
domain.set_boundary({"left": Bi, "right": Bo, "top": Br, "bottom": Br})
# -------------------------------------------------------------------
# Evolve system through time
# -------------------------------------------------------------------
for t in domain.evolve(yieldstep=1, finaltime=4.0):
pass
# Check that quantities have been stored correctly
source = domain.get_name() + ".sww"
# x = fid.variables['x'][:]
# y = fid.variables['y'][:]
# stage = fid.variables['stage'][:]
# elevation = fid.variables['elevation'][:]
# fid.close()
# assert len(stage.shape) == 2
# assert len(elevation.shape) == 2
# M, N = stage.shape
sww_file = sww.Read_sww(source)
# print 'last frame number',sww_file.get_last_frame_number()
assert num.allclose(sww_file.x, domain.get_vertex_coordinates()[:, 0])
assert num.allclose(sww_file.y, domain.get_vertex_coordinates()[:, 1])
assert num.allclose(sww_file.time, [0.0, 1.0, 2.0, 3.0, 4.0])
M = domain.get_number_of_triangles()
assert num.allclose(num.reshape(num.arange(3 * M), (M, 3)), sww_file.vertices)
last_frame_number = sww_file.get_last_frame_number()
assert last_frame_number == 4
assert num.allclose(sww_file.get_bounds(), [0.0, length, 0.0, width])
assert "stage" in sww_file.quantities.keys()
assert "friction" in sww_file.quantities.keys()
assert "elevation" in sww_file.quantities.keys()
assert "xmomentum" in sww_file.quantities.keys()
assert "ymomentum" in sww_file.quantities.keys()
for qname, q in sww_file.read_quantities(last_frame_number).items():
# print qname
# print num.linalg.norm(num.abs((domain.get_quantity(qname).get_values()-q).flatten()), ord=1)
assert num.allclose(domain.get_quantity(qname).get_values(), q)
# -----------------------------------------
# Start the evolution off again at frame 3
#.........這裏部分代碼省略.........
示例3: setUp
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import get_vertex_coordinates [as 別名]
def setUp(self):
import time
self.verbose = Test_File_Conversion.verbose
# Create basic mesh
points, vertices, boundary = rectangular(2, 2)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
# Set some field values
domain.set_quantity('elevation', lambda x,y: -x)
domain.set_quantity('friction', 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
######################
#Initial condition - with jumps
bed = domain.quantities['elevation'].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i,:] = bed[i,:] + h
else:
stage[i,:] = bed[i,:]
domain.set_quantity('stage', stage)
domain.distribute_to_vertices_and_edges()
self.initial_stage = copy.copy(domain.quantities['stage'].vertex_values)
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:,0:6:2].copy()
self.Y = C[:,1:6:2].copy()
self.F = bed
#Write A testfile (not realistic. Values aren't realistic)
self.test_MOST_file = 'most_small'
longitudes = [150.66667, 150.83334, 151., 151.16667]
latitudes = [-34.5, -34.33333, -34.16667, -34]
long_name = 'LON'
lat_name = 'LAT'
nx = 4
ny = 4
six = 6
for ext in ['_ha.nc', '_ua.nc', '_va.nc', '_e.nc']:
fid = NetCDFFile(self.test_MOST_file + ext, netcdf_mode_w)
fid.createDimension(long_name,nx)
fid.createVariable(long_name,netcdf_float,(long_name,))
fid.variables[long_name].point_spacing='uneven'
fid.variables[long_name].units='degrees_east'
fid.variables[long_name][:] = longitudes
fid.createDimension(lat_name,ny)
fid.createVariable(lat_name,netcdf_float,(lat_name,))
fid.variables[lat_name].point_spacing='uneven'
fid.variables[lat_name].units='degrees_north'
fid.variables[lat_name][:] = latitudes
fid.createDimension('TIME',six)
fid.createVariable('TIME',netcdf_float,('TIME',))
fid.variables['TIME'].point_spacing='uneven'
fid.variables['TIME'].units='seconds'
fid.variables['TIME'][:] = [0.0, 0.1, 0.6, 1.1, 1.6, 2.1]
name = ext[1:3].upper()
if name == 'E.': name = 'ELEVATION'
fid.createVariable(name,netcdf_float,('TIME', lat_name, long_name))
fid.variables[name].units='CENTIMETERS'
fid.variables[name].missing_value=-1.e+034
fid.variables[name][:] = [[[0.3400644, 0, -46.63519, -6.50198],
[-0.1214216, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0.3400644, 2.291054e-005, -23.33335, -6.50198],
[-0.1213987, 4.581959e-005, -1.594838e-007, 1.421085e-012],
[2.291054e-005, 4.582107e-005, 4.581715e-005, 1.854517e-009],
[0, 2.291054e-005, 2.291054e-005, 0]],
[[0.3400644, 0.0001374632, -23.31503, -6.50198],
#.........這裏部分代碼省略.........