本文整理匯總了Python中anuga.shallow_water.shallow_water_domain.Domain.format方法的典型用法代碼示例。如果您正苦於以下問題:Python Domain.format方法的具體用法?Python Domain.format怎麽用?Python Domain.format使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類anuga.shallow_water.shallow_water_domain.Domain
的用法示例。
在下文中一共展示了Domain.format方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_sww2pts_centroids_de0
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import format [as 別名]
def test_sww2pts_centroids_de0(self):
"""Test that sww information can be converted correctly to pts data at specified coordinates
- in this case, the centroids.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Used for points that lie outside mesh
NODATA_value = 1758323
# Setup
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create shallow water domain
domain = Domain(*rectangular(2, 2))
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
domain.set_name('datatest_de0')
ptsfile = domain.get_name() + '_elevation.pts'
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.set_quantity('elevation', lambda x,y: -x-y)
domain.geo_reference = Geo_reference(56,308500,6189000)
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
#self.domain.tight_slope_limiters = 1
domain.evolve_to_end(finaltime = 0.01)
sww.store_timestep()
# Check contents in NetCDF
fid = NetCDFFile(sww.filename, netcdf_mode_r)
# Get the variables
x = fid.variables['x'][:]
y = fid.variables['y'][:]
elevation = fid.variables['elevation'][:]
time = fid.variables['time'][:]
stage = fid.variables['stage'][:]
volumes = fid.variables['volumes'][:]
# Invoke interpolation for vertex points
points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 )
points = num.ascontiguousarray(points)
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
ref_point_values = elevation
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
# Invoke interpolation for centroids
points = domain.get_centroid_coordinates()
#print points
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
#ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids
ref_point_values = [-0.77777777, -0.77777777, -0.99999998, -0.99999998,
-0.99999998, -0.99999998, -1.22222221, -1.22222221]
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
fid.close()
#Cleanup
os.remove(sww.filename)
os.remove(ptsfile)
示例2: test_get_energy_through_cross_section
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import format [as 別名]
def test_get_energy_through_cross_section(self):
"""test_get_energy_through_cross_section(self):
Test that the specific and total energy through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected energies.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
Es = h + 0.5*v*v/g # Specific energy head [m]
Et = w + 0.5*v*v/g # Total energy head [m]
This test uses georeferencing
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 1
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
e = -1.0
w = 1.0
h = w-e
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', e)
domain.set_quantity('stage', w)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
I = domain.geo_reference.get_absolute(I)
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
#print i, t, f(t, i)
assert num.allclose(f(t, i), [w, uh, 0], atol=1.0e-6)
# Check energies through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
cross_section = domain.geo_reference.get_absolute(cross_section)
time, Es = get_energy_through_cross_section(swwfile,
cross_section,
kind='specific',
verbose=False)
assert num.allclose(Es, h + 0.5*u*u/g)
time, Et = get_energy_through_cross_section(swwfile,
#.........這裏部分代碼省略.........
示例3: test_get_flow_through_cross_section_stored_uniquely
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import format [as 別名]
def test_get_flow_through_cross_section_stored_uniquely(self):
"""test_get_flow_through_cross_section_stored_uniquely(self):
Test that the total flow through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 3
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest_uniquely')
swwfile = domain.get_name() + '.sww'
domain.set_store_vertices_uniquely()
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
h = 1.0
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([h, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', 0.0)
domain.set_quantity('stage', h)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
assert num.allclose(f(t, i), [1, 2, 0], atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
# Try the same with partial lines
x = length/2.
for i in range(5):
start_point = [length/2., i*width/5.]
#print start_point
cross_section = [start_point, [length/2., width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
#.........這裏部分代碼省略.........
示例4: test_get_maximum_inundation_de0
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import format [as 別名]
def test_get_maximum_inundation_de0(self):
"""Test that sww information can be converted correctly to maximum
runup elevation and location (without and with georeferencing)
This test creates a slope and a runup which is maximal (~11m) at around 10s
and levels out to the boundary condition (1m) at about 30s.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
#Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 100m)
points, vertices, boundary = rectangular(20, 5, 100, 50)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
filename = 'runup_test_3'
domain.set_name(filename)
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
# FIXME (Ole): Backwards compatibility
# Look at sww file and see what happens when
# domain.tight_slope_limiters = 1
domain.tight_slope_limiters = 0
domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8)
Br = Reflective_boundary(domain)
Bd = Dirichlet_boundary([1.0,0,0])
#---------- First run without geo referencing
domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope
domain.set_quantity('stage', -6)
domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = 50):
pass
# Check maximal runup
runup = get_maximum_inundation_elevation(swwfile)
location = get_maximum_inundation_location(swwfile)
#print 'Runup, location', runup, location
assert num.allclose(runup, 4.66666666667)
assert num.allclose(location[0], 46.666668)
# Check final runup
runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50])
location = get_maximum_inundation_location(swwfile, time_interval=[45,50])
#print 'Runup, location:',runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.666668)
# Check runup restricted to a polygon
p = [[50,1], [99,1], [99,49], [50,49]]
runup = get_maximum_inundation_elevation(swwfile, polygon=p)
location = get_maximum_inundation_location(swwfile, polygon=p)
#print runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.6666666)
# Check that mimimum_storable_height works
fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file
stage = fid.variables['stage_c'][:]
z = fid.variables['elevation_c'][:]
xmomentum = fid.variables['xmomentum_c'][:]
ymomentum = fid.variables['ymomentum_c'][:]
for i in range(stage.shape[0]):
h = stage[i]-z # depth vector at time step i
# Check every node location
for j in range(stage.shape[1]):
# Depth being either exactly zero implies
# momentum being zero.
# Or else depth must be greater than or equal to
# the minimal storable height
if h[j] == 0.0:
assert xmomentum[i,j] == 0.0
assert ymomentum[i,j] == 0.0
else:
assert h[j] >= 0.0
fid.close()
#.........這裏部分代碼省略.........
示例5: setUp
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import format [as 別名]
def setUp(self):
# print "****set up****"
# Create an sww file
# Set up an sww that has a geo ref.
# have it cover an area in Australia. 'gong maybe
# Don't have many triangles though!
# Site Name: GDA-MGA: (UTM with GRS80 ellipsoid)
# Zone: 56
# Easting: 222908.705 Northing: 6233785.284
# Latitude: -34 0 ' 0.00000 '' Longitude: 150 0 ' 0.00000 ''
# Grid Convergence: -1 40 ' 43.13 '' Point Scale: 1.00054660
# geo-ref
# Zone: 56
# Easting: 220000 Northing: 6230000
# have a big area covered.
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-33, 152], [-35, 152], [-35, 150], [-33, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
# domain.set_quantity('stage', 1.0)
domain.set_quantity("elevation", -0.5)
domain.set_quantity("friction", 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
######################
# Initial condition - with jumps
bed = domain.quantities["elevation"].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i, :] = bed[i, :] + h
else:
stage[i, :] = bed[i, :]
domain.set_quantity("stage", stage)
domain.set_quantity("xmomentum", stage * 22.0)
domain.set_quantity("ymomentum", stage * 55.0)
domain.distribute_to_vertices_and_edges()
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:, 0:6:2].copy()
self.Y = C[:, 1:6:2].copy()
self.F = bed
# sww_file = tempfile.mktemp("")
self.domain.set_name("tid_P0")
self.domain.format = "sww"
self.domain.smooth = True
self.domain.reduction = mean
sww = SWW_file(self.domain)
sww.store_connectivity()
sww.store_timestep()
self.domain.time = 2.0
sww.store_timestep()
self.sww = sww # so it can be deleted
# Create another sww file
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-35, 152], [-36, 152], [-36, 150], [-35, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
#.........這裏部分代碼省略.........
示例6: test_inundation_damage_list
# 需要導入模塊: from anuga.shallow_water.shallow_water_domain import Domain [as 別名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import format [as 別名]
def test_inundation_damage_list(self):
# create mesh
mesh_file = tempfile.mktemp(".tsh")
points = [[0.0, 0.0], [6.0, 0.0], [6.0, 6.0], [0.0, 6.0]]
m = Mesh()
m.add_vertices(points)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
domain.set_quantity("elevation", elevation_function)
domain.set_quantity("friction", 0.03)
domain.set_quantity("xmomentum", 22.0)
domain.set_quantity("ymomentum", 55.0)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
# This call mangles the stage values.
domain.distribute_to_vertices_and_edges()
domain.set_quantity("stage", 0.3)
# sww_file = tempfile.mktemp("")
domain.set_name("datatest" + str(time.time()))
domain.format = "sww"
domain.smooth = True
domain.reduction = mean
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
domain.set_quantity("stage", -0.3)
domain.time = 2.0
sww.store_timestep()
# Create a csv file
csv_file = tempfile.mktemp(".csv")
fd = open(csv_file, "wb")
writer = csv.writer(fd)
writer.writerow(["x", "y", STR_VALUE_LABEL, CONT_VALUE_LABEL, "ROOF_TYPE", WALL_TYPE_LABEL, SHORE_DIST_LABEL])
writer.writerow([5.5, 0.5, "10", "130000", "Metal", "Timber", 20])
writer.writerow([4.5, 1.0, "150", "76000", "Metal", "Double Brick", 20])
writer.writerow([0.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
writer.writerow([6.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
fd.close()
extension = ".csv"
csv_fileII = tempfile.mktemp(extension)
fd = open(csv_fileII, "wb")
writer = csv.writer(fd)
writer.writerow(["x", "y", STR_VALUE_LABEL, CONT_VALUE_LABEL, "ROOF_TYPE", WALL_TYPE_LABEL, SHORE_DIST_LABEL])
writer.writerow([5.5, 0.5, "10", "130000", "Metal", "Timber", 20])
writer.writerow([4.5, 1.0, "150", "76000", "Metal", "Double Brick", 20])
writer.writerow([0.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
writer.writerow([6.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
fd.close()
sww_file = domain.get_name() + "." + domain.format
# print "sww_file",sww_file
marker = "_gosh"
inundation_damage(sww_file, [csv_file, csv_fileII], exposure_file_out_marker=marker, verbose=False)
# Test one file
csv_handle = Exposure(csv_file[:-4] + marker + extension)
struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE)
# print "struct_loss",struct_loss
struct_loss = [float(x) for x in struct_loss]
# pprint(struct_loss)
assert num.allclose(struct_loss, [10.0, 150.0, 66.55333347876866, 0.0])
depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE)
# print "depth",depth
depth = [float(x) for x in depth]
assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3])
# Test another file
csv_handle = Exposure(csv_fileII[:-4] + marker + extension)
struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE)
# print "struct_loss",struct_loss
struct_loss = [float(x) for x in struct_loss]
# pprint(struct_loss)
assert num.allclose(struct_loss, [10.0, 150.0, 66.553333478768664, 0.0])
depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE)
# print "depth",depth
depth = [float(x) for x in depth]
assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3])
os.remove(sww.filename)
os.remove(csv_file)
os.remove(csv_fileII)